在分布式物联网的大规模应用背景下,各实体设备中密码技术作为信息安全的底层支撑架构,正面临着侧信道攻击(SCA)这一物理层安全威胁的严峻挑战. SM4分组密码算法作为我国自主研制的商用密码算法标准,已深度集成于分布式物联网安全协议中...在分布式物联网的大规模应用背景下,各实体设备中密码技术作为信息安全的底层支撑架构,正面临着侧信道攻击(SCA)这一物理层安全威胁的严峻挑战. SM4分组密码算法作为我国自主研制的商用密码算法标准,已深度集成于分布式物联网安全协议中,但其实现层面的侧信道脆弱性问题亟待解决.针对SM4密钥扩展算法的侧信道攻击研究存在空白,现有攻击方法多依赖多能迹统计特性,而单能迹攻击研究匮乏.研究提出一种基于贝叶斯网络结合建模侧信道攻击的单能迹侧信道攻击方法,针对单条能量轨迹,通过构建概率图模型,结合置信传播算法,实现对轮子密钥的高效推测,进而恢复主密钥.仿真实验与实测实验表明该攻击方法有效,在理想实测环境下主密钥恢复成功率达85.74%,即使在实测能迹中添加大量高斯白噪声,使得信噪比仅为10 d B的条件下,成功率仍可达70%.与传统方法相比,所提方法在成功率、所需能量轨迹数量和攻击时间等方面优势显著,为分布式物联网系统含密设备的侧信道攻击研究提供了新的思路与技术手段,也为相关防护设计提供了理论依据和参考.展开更多
智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是...智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是否满足需求就非常重要.然而,作为路径规划算法的输入,任务空间中威胁障碍物的分布形式复杂且多样.此外,路径规划算法在为每个测试用例规划路径时,通常需要较高的运行代价.为了提升路径规划算法的测试效率,将动态随机测试思想引入到路径规划算法中,提出了面向智能体路径规划算法的动态随机测试方法(dynamic random testing approach for intelligent agent path planning algorithms,DRT-PP).具体来说,DRT-PP对路径规划任务空间进行离散划分,并在每个子区域内引入威胁生成概率,进而构建测试剖面,该测试剖面可以作为测试策略在测试用例生成过程中使用.此外,DRT-PP在测试过程中通过动态调整测试剖面,使其逐渐优化,从而提升测试效率.实验结果显示,与随机测试及自适应随机测试相比,DRT-PP方法能够在保证测试用例多样性的同时,生成更多能够暴露被测算法性能缺陷的测试用例.展开更多
文摘在分布式物联网的大规模应用背景下,各实体设备中密码技术作为信息安全的底层支撑架构,正面临着侧信道攻击(SCA)这一物理层安全威胁的严峻挑战. SM4分组密码算法作为我国自主研制的商用密码算法标准,已深度集成于分布式物联网安全协议中,但其实现层面的侧信道脆弱性问题亟待解决.针对SM4密钥扩展算法的侧信道攻击研究存在空白,现有攻击方法多依赖多能迹统计特性,而单能迹攻击研究匮乏.研究提出一种基于贝叶斯网络结合建模侧信道攻击的单能迹侧信道攻击方法,针对单条能量轨迹,通过构建概率图模型,结合置信传播算法,实现对轮子密钥的高效推测,进而恢复主密钥.仿真实验与实测实验表明该攻击方法有效,在理想实测环境下主密钥恢复成功率达85.74%,即使在实测能迹中添加大量高斯白噪声,使得信噪比仅为10 d B的条件下,成功率仍可达70%.与传统方法相比,所提方法在成功率、所需能量轨迹数量和攻击时间等方面优势显著,为分布式物联网系统含密设备的侧信道攻击研究提供了新的思路与技术手段,也为相关防护设计提供了理论依据和参考.
文摘智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是否满足需求就非常重要.然而,作为路径规划算法的输入,任务空间中威胁障碍物的分布形式复杂且多样.此外,路径规划算法在为每个测试用例规划路径时,通常需要较高的运行代价.为了提升路径规划算法的测试效率,将动态随机测试思想引入到路径规划算法中,提出了面向智能体路径规划算法的动态随机测试方法(dynamic random testing approach for intelligent agent path planning algorithms,DRT-PP).具体来说,DRT-PP对路径规划任务空间进行离散划分,并在每个子区域内引入威胁生成概率,进而构建测试剖面,该测试剖面可以作为测试策略在测试用例生成过程中使用.此外,DRT-PP在测试过程中通过动态调整测试剖面,使其逐渐优化,从而提升测试效率.实验结果显示,与随机测试及自适应随机测试相比,DRT-PP方法能够在保证测试用例多样性的同时,生成更多能够暴露被测算法性能缺陷的测试用例.