为增强三电平逆变器馈电永磁同步电机驱动系统在模型失配和工况变化下的稳定性和鲁棒性,该文提出一种基于强跟踪扩展卡尔曼观测器的无模型预测电流控制(strong tracking extended Kalman observer based model-free predictive current ...为增强三电平逆变器馈电永磁同步电机驱动系统在模型失配和工况变化下的稳定性和鲁棒性,该文提出一种基于强跟踪扩展卡尔曼观测器的无模型预测电流控制(strong tracking extended Kalman observer based model-free predictive current control,STEKO-MFPCC)策略。首先,分析电机在模型失配工况下的集总扰动,建立系统超局部模型;其次,设计EKO估计超局部模型中非线性部分,同时引入强跟踪滤波策略,快速调整误差协方差矩阵,优化增益矩阵,提升传统扩展卡尔曼算法的动态性能;最后,构建含有中点电位和电流的预测方程,输出令代价函数最小的电压矢量。实验结果表明,相较传统MFPCC,所提方法有效抑制中点电位波动,提升电机转速响应速度,改善输出电流质量,在参数扰动工况下增强系统鲁棒性和抗扰动能力。展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
文摘为增强三电平逆变器馈电永磁同步电机驱动系统在模型失配和工况变化下的稳定性和鲁棒性,该文提出一种基于强跟踪扩展卡尔曼观测器的无模型预测电流控制(strong tracking extended Kalman observer based model-free predictive current control,STEKO-MFPCC)策略。首先,分析电机在模型失配工况下的集总扰动,建立系统超局部模型;其次,设计EKO估计超局部模型中非线性部分,同时引入强跟踪滤波策略,快速调整误差协方差矩阵,优化增益矩阵,提升传统扩展卡尔曼算法的动态性能;最后,构建含有中点电位和电流的预测方程,输出令代价函数最小的电压矢量。实验结果表明,相较传统MFPCC,所提方法有效抑制中点电位波动,提升电机转速响应速度,改善输出电流质量,在参数扰动工况下增强系统鲁棒性和抗扰动能力。
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.