We introduce the extended Kalman filter(EKF)method combined with the least square estimation to identify the unknown load acting on the time-varying structure and realize the tracking of the structural parameters of t...We introduce the extended Kalman filter(EKF)method combined with the least square estimation to identify the unknown load acting on the time-varying structure and realize the tracking of the structural parameters of the time-varying system.Firstly,we propose the dynamic load identification method when the unknown parameters are stiffness coefficients.Then,a five-degree-of-freedom slowly-varying-stiffness structure is introduced to verify the effectiveness and the accuracy of the EKF method.The results show that the EKF method can accurately identify unknown loads and structural parameters simultaneously even considering noises in the input data.展开更多
An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high m...An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high mobility scenarios. It is unveiled that, the auto-regressive (AR) model not only provides an effective method to capture the dynamics of the channel parameters, which enables the prediction capability in the EKF algorithm, but also suggests an method to incorporate multiple successive pilot symbols for the improved measurement update.展开更多
基金supported in part by the National Natural Science Foundation of China(No.51775270)the Project of Qatar National Research Fund(No.NPRP11S-1220-170112)
文摘We introduce the extended Kalman filter(EKF)method combined with the least square estimation to identify the unknown load acting on the time-varying structure and realize the tracking of the structural parameters of the time-varying system.Firstly,we propose the dynamic load identification method when the unknown parameters are stiffness coefficients.Then,a five-degree-of-freedom slowly-varying-stiffness structure is introduced to verify the effectiveness and the accuracy of the EKF method.The results show that the EKF method can accurately identify unknown loads and structural parameters simultaneously even considering noises in the input data.
文摘An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high mobility scenarios. It is unveiled that, the auto-regressive (AR) model not only provides an effective method to capture the dynamics of the channel parameters, which enables the prediction capability in the EKF algorithm, but also suggests an method to incorporate multiple successive pilot symbols for the improved measurement update.