期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于CSLS-CycleGAN的侧扫声纳水下目标图像样本扩增法 被引量:2
1
作者 汤寓麟 王黎明 +3 位作者 余德荧 李厚朴 刘敏 张卫东 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1514-1524,共11页
针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络... 针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络(least squares generative adversarial networks,LSGAN)及循环对抗生成网络(cycle generative adversarial networks,CycleGAN)的侧扫声纳水下目标图像样本扩增方法。首先,受CycleGAN的启发,设计基于循环一致性的单循环网络结构,保证模型的训练效率。然后,在生成器中融合CSA模块,减少信息弥散的同时增强跨纬度交互。最后,设计了基于LSGAN的损失函数,提高生成图像质量的同时提高训练稳定性。在船舶光学域数据集与侧扫声纳沉船数据集上进行实验,所提方法实现了光学-侧扫声纳样本间信息的高效、稳健转换以及大量侧扫声纳目标样本的扩增。同时,基于本文生成样本训练后的检测模型进行了水下目标检测,结果表明,使用本文样本扩增数据训练后的模型在少样本沉船目标检测的平均准确率达到了84.71%,证明了所提方法实现了零样本和小样本水下强代表性目标样本的高质量扩增,并为高性能水下目标检测模型构建提供了一种新的途径。 展开更多
关键词 样本 侧扫声纳 循环生成对抗网络 通道和空间注意力模块 最小二乘生成对抗网络
在线阅读 下载PDF
用于绝缘子故障检测的CycleGAN小样本库扩增方法研究 被引量:9
2
作者 崔克彬 潘锋 《计算机工程与科学》 CSCD 北大核心 2022年第3期509-515,共7页
在深度学习的训练中,绝缘子检测需要大量的故障绝缘子,而实际难以获得大量故障绝缘子数据。生成对抗网络为扩增训练样本提供了可行的解决办法。在循环一致性生成对抗网络(CycleGAN)结构上补充缺陷绝缘子样本,通过更改损失函数来优化模型... 在深度学习的训练中,绝缘子检测需要大量的故障绝缘子,而实际难以获得大量故障绝缘子数据。生成对抗网络为扩增训练样本提供了可行的解决办法。在循环一致性生成对抗网络(CycleGAN)结构上补充缺陷绝缘子样本,通过更改损失函数来优化模型,将正向生成器生成的图像,输入到反向生成器,保持样本整体轮廓的同时,增加了差异性。将改进的CycleGAN模型与其他GAN模型在SSD目标检测方法中进行比较,结果表明改进的CycleGAN扩增数据集的方法相较于其他扩增方法在绝缘子掉串检测识别率上有明显提升。 展开更多
关键词 循环一致性生成对抗网络 绝缘子 样本 风格转换
在线阅读 下载PDF
少样本条件下基于K⁃最近邻及多分类器协同的样本扩增分类 被引量:4
3
作者 陈伟杰 郑成勇 +1 位作者 蔡圣杰 罗智玉 《现代电子技术》 2022年第15期123-127,共5页
针对少样本条件下的分类问题,提出一种基于K⁃最近邻及多分类器协同的训练样本扩增分类框架。首先利用少量标记样本对多个分类器进行初步训练,并在整个样本空间中搜索出每个标记样本的K个最近邻;然后利用初步训练好的分类器,对每个标记... 针对少样本条件下的分类问题,提出一种基于K⁃最近邻及多分类器协同的训练样本扩增分类框架。首先利用少量标记样本对多个分类器进行初步训练,并在整个样本空间中搜索出每个标记样本的K个最近邻;然后利用初步训练好的分类器,对每个标记样本的K个最近邻进行分类,若某个最近邻被多数或全体分类器判为具有与其标记样本相同的类,则将该最近邻判别为与其标记样本同类,并将其添加至该标记样本所属类的扩展训练样本集,利用扩展训练样本集再次对各分类器进行训练;最后利用再次训练过的多个分类器对剩余未标记样本进行基于投票的分类判决。在多个基准测试数据库上的对比实验结果表明,在少标记样本条件下,所提算法能显著提升分类器的分类精度。 展开更多
关键词 样本分类 K⁃最近邻 多分类器协同 样本 投票法 半监督分类 样本筛选
在线阅读 下载PDF
基于样本扩增的水下集装箱智能识别 被引量:1
4
作者 龚权华 朱维强 夏显文 《海洋测绘》 CSCD 北大核心 2022年第4期22-26,共5页
侧扫声纳是水下应急扫测的重要手段,水下目标识别是其中的关键技术,基于深度学习的智能识别技术现阶段因缺少大量样本效果不佳。基于侧扫声纳成像机理,针对拖鱼定位不准、船速不均匀和转向、声纳收发机制造成图像畸变问题,以集装箱为对... 侧扫声纳是水下应急扫测的重要手段,水下目标识别是其中的关键技术,基于深度学习的智能识别技术现阶段因缺少大量样本效果不佳。基于侧扫声纳成像机理,针对拖鱼定位不准、船速不均匀和转向、声纳收发机制造成图像畸变问题,以集装箱为对象,提出一种基于弹性形变的样本扩增方法和目标识别方法。利用集装箱成像机理及畸变特点,首先对集装箱图像进行仿射变换;然后对该图像使用弹性变换(Elastic Distortions),随机调整形变控制参数生成指定数量的目标图像,完成样本扩增;在此基础上构建神经网络模型,实现侧扫声纳图像中的集装箱识别。试验表明,应用简单的弹性变换方法有效地扩增了样本,增强了神经网络的泛化能力,智能识别模型的查准率和查全率都提高了16%以上。 展开更多
关键词 侧扫声纳 深度学习 目标识别 样本 弹性变换
在线阅读 下载PDF
基于生成对抗网络和深度神经网络的武器系统效能评估 被引量:8
5
作者 李健 刘海滨 胡笛 《计算机应用与软件》 北大核心 2020年第2期253-258,共6页
武器系统的效能评估受很多因素的影响,神经网络是现代武器系统效能评估的重要方法,但受样本量的限制,很难达到预期的训练效果。针对这一问题,选取少批量真实数据训练生成对抗网络,待网络达到纳什均衡后,利用生成网络产生同分布的伪数据... 武器系统的效能评估受很多因素的影响,神经网络是现代武器系统效能评估的重要方法,但受样本量的限制,很难达到预期的训练效果。针对这一问题,选取少批量真实数据训练生成对抗网络,待网络达到纳什均衡后,利用生成网络产生同分布的伪数据。将伪数据与真实数据结合形成扩增样本,使用扩增样本训练深度神经网络用以评估。同时,生成对抗网络中的判别网络也能为专家评估提供一定的参考。 展开更多
关键词 武器系统 效能评估 生成对抗网络 扩增样本 深度神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部