期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自适应融合的手掌静脉增强方法 被引量:4
1
作者 娄梦莹 袁丽莎 +2 位作者 刘娅琴 万雪梅 杨丰 《计算机应用》 CSCD 北大核心 2019年第4期1176-1182,共7页
针对掌脉轮廓不清晰,图像对比度低、亮度低,进而导致识别性能降低的现象,提出一种自适应融合的手掌静脉增强方法。首先,基于暗原色先验(DCP)去雾算法,根据掌脉图像变异系数自适应选择去雾系数,得到DCP增强图像,并且基于部分子块重叠直... 针对掌脉轮廓不清晰,图像对比度低、亮度低,进而导致识别性能降低的现象,提出一种自适应融合的手掌静脉增强方法。首先,基于暗原色先验(DCP)去雾算法,根据掌脉图像变异系数自适应选择去雾系数,得到DCP增强图像,并且基于部分子块重叠直方图均衡(POSHE)算法得到POSHE增强图像;然后,将图像分为16个子块,依据图像灰度均值与标准差确定各子块权重;最后,根据各子块权重对DCP和POSHE增强图像进行自适应融合,得到最终增强图像。该方法既保留了DCP算法在增强图像对比度和亮度的同时不引入明显噪声的优点,又保留了POSHE算法在增强图像对比度和亮度的同时不损失局部细节的特点;同时,两者的自适应融合既解决了DCP图像阴影部分掌脉缺失现象,又削弱了POSHE产生的块效应。在对两个公开库和自建库分别进行的实验中,三个数据库的等错误率分别为0.000 4、0.047 2、0.057 9,识别率分别为99.98%、94.27%、92.05%。实验结果表明,与现有的图像增强方法相比,该方法降低了等错误率,提高了识别精度。 展开更多
关键词 手掌静脉图像增强 暗原色先验 部分子块重叠直方图均衡化 分块 自适应融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部