期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
深度图像中的3D手势姿态估计方法综述 被引量:10
1
作者 王丽萍 汪成 +1 位作者 邱飞岳 章国道 《小型微型计算机系统》 CSCD 北大核心 2021年第6期1227-1235,共9页
3D手势姿态估计是计算机视觉领域一个重要的研究方向,在虚拟现实、增强现实、人机交互、手语理解等领域中具有重要的研究意义和广泛的应用前景.深度学习技术已经广泛应用于3D手势姿态估计任务并取得了重要研究成果,其中深度图像具有的... 3D手势姿态估计是计算机视觉领域一个重要的研究方向,在虚拟现实、增强现实、人机交互、手语理解等领域中具有重要的研究意义和广泛的应用前景.深度学习技术已经广泛应用于3D手势姿态估计任务并取得了重要研究成果,其中深度图像具有的深度信息可以很好地表示手势纹理特征,深度图像已成为手势姿态估计任务重要数据源.本文首先全面阐述了手势姿态估计发展历程、常用数据集、数据集标记方式和评价指标;接着根据深度图像的不同展现形式,将基于深度图像的数据驱动手势姿态估计方法分为基于简单2D深度图像、基于3D体素数据和基于3D点云数据,并对每类方法的代表性算法进行了概括与总结;最后对手势姿态估计未来发展进行了展望. 展开更多
关键词 3D手势姿态估计 深度学习 深度图像 虚拟现实 人机交互
在线阅读 下载PDF
基于伪三维卷积神经网络的手势姿态估计 被引量:4
2
作者 张宏源 袁家政 +3 位作者 刘宏哲 原春锋 王雪峤 邓智方 《计算机应用研究》 CSCD 北大核心 2020年第4期1230-1233,1243,共5页
大多数现有的基于深度学习的手势姿态估计方法都使用标准三维卷积神经网络提取三维特征,估计手部关节坐标。该方法提取的特征缺乏手部的多尺度信息,限制了手势姿态估计的精度。另外,由于三维卷积神经网络巨大的计算成本和内存需求,这些... 大多数现有的基于深度学习的手势姿态估计方法都使用标准三维卷积神经网络提取三维特征,估计手部关节坐标。该方法提取的特征缺乏手部的多尺度信息,限制了手势姿态估计的精度。另外,由于三维卷积神经网络巨大的计算成本和内存需求,这些方法常难以满足实时性要求。为了克服这些缺点,提出以空间滤波器和深度滤波器级联的方式模拟三维卷积,减少网络参数量。同时,在各个尺度上提取手势姿态特征并加以整合,充分利用手势的三维信息。实验表明,该方法能有效提高手势姿态估计精度,减小模型尺寸,且在具有单块GPU的计算机上能以超过119 fps的速度运行。 展开更多
关键词 手势姿态估计 伪三维卷积神经网络 三维特征 深度图像 深度学习
在线阅读 下载PDF
基于多任务学习CNN辅助Transformer的手部mesh重建 被引量:2
3
作者 谢苏 张孙杰 +1 位作者 王永雄 颜婷丽 《计算机应用研究》 CSCD 北大核心 2022年第12期3830-3836,共7页
针对当前手势姿态估计算法未充分利用2D信息辅助3D手部mesh重建的问题,首次在手部Mask、2D热力图的基础上提出引入RGB图像的HOG特征图,通过多任务学习CNN的框架对2D信息进行特征提取,并针对手的拓扑结构进行信息融合增强。为了解决Trans... 针对当前手势姿态估计算法未充分利用2D信息辅助3D手部mesh重建的问题,首次在手部Mask、2D热力图的基础上提出引入RGB图像的HOG特征图,通过多任务学习CNN的框架对2D信息进行特征提取,并针对手的拓扑结构进行信息融合增强。为了解决Transformer encoder中的隐层embeddings维度一致性以及参数过大问题,设计了一种新的MLP(multi-layer perception)模块嵌入Transformer encoder之间,达到embeddings的数量渐进增加以及其维度渐进减少的目的,从而完成手部mesh精细化的预测。实验结果表明该CNN与Transformer混合的新框架在FreiHAND和RHD数据集均取得了较好效果。 展开更多
关键词 手势姿态估计 手部mesh重建 HOG特征 多任务学习 TRANSFORMER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部