期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合模拟退火的随机森林房价评估算法 被引量:5
1
作者 丁旸钧天 曹怀虎 《计算机应用研究》 CSCD 北大核心 2020年第3期784-788,共5页
传统的随机森林房价评估算法存在着大量参数组合计算问题,参数的优劣对算法准确度影响很大。针对此问题,结合随机森林和模拟退火算法提出一种融合模拟退火的随机森林房价评估算法。首先通过10次10折交叉验证法对参数进行敏感性测试,选... 传统的随机森林房价评估算法存在着大量参数组合计算问题,参数的优劣对算法准确度影响很大。针对此问题,结合随机森林和模拟退火算法提出一种融合模拟退火的随机森林房价评估算法。首先通过10次10折交叉验证法对参数进行敏感性测试,选择出对随机森林算法敏感的参数;然后结合模拟退火算法对敏感的参数迭代寻优,通过与网格搜索算法、随机搜索算法进行对比分析发现,在参数组合计算过程中,模拟退火算法在运行时间和算法准确率方面更优,弥补了网格搜索算法耗时过长和随机搜索算法低准确率的缺陷;最后将融合模拟退火的随机森林算法应用于房价评估问题,构成新的房价评估算法。将新算法与传统随机森林房价评估算法进行了对比实验分析,结果表明,融合模拟退火的随机森林房价评估算法误差值减少,拟合优度值增加,评估的准确度得到了显著提升。 展开更多
关键词 随机森林 模拟退火 参数优化 房价评估
在线阅读 下载PDF
基于集成LightGBM和贝叶斯优化策略的房价智能评估模型 被引量:25
2
作者 顾桐 许国良 +3 位作者 李万林 李家浩 王志愿 雒江涛 《计算机应用》 CSCD 北大核心 2020年第9期2762-2767,共6页
针对传统房价评估方法中存在的数据源单一、过分依赖主观经验、考虑因素理想化等问题,提出一种基于多源数据和集成学习的智能评估方法。首先,从多源数据中构造特征集,并利用Pearson相关系数与序列前向选择法提取最优特征子集;然后,基于... 针对传统房价评估方法中存在的数据源单一、过分依赖主观经验、考虑因素理想化等问题,提出一种基于多源数据和集成学习的智能评估方法。首先,从多源数据中构造特征集,并利用Pearson相关系数与序列前向选择法提取最优特征子集;然后,基于构造的特征,以Bagging集成策略作为结合方法集成多个轻量级梯度提升机(LightGBM),并利用贝叶斯优化算法对模型进行优化;最后,将该方法应用于房价评估问题,实现房价的智能评估。在真实的房价数据集上进行的实验表明,相较于支持向量机(SVM)、随机森林等传统模型,引入集成学习和贝叶斯优化的新模型的评估精度提升了3.15%,并且百分误差在10%以内的评估结果占比84.09%。说明所提模型能够很好地应用于房价评估领域,得到的评估结果更准确。 展开更多
关键词 多源数据 特征选择 轻量级梯度提升机 集成学习 贝叶斯优化 房价智能评估
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部