期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于自组织聚类和JS散度的RBF神经网络 被引量:2
1
作者 董镇林 伍世虔 +1 位作者 叶健 银开州 《计算机工程与设计》 北大核心 2024年第4期1062-1068,共7页
针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚... 针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚类精度,得到代表数据集分布特性的隐节点;为解决隐节点冗余和相似的问题,提出一种基于敏感度分析的隐节点删除方法和基于詹森-香农(JS)散度的隐节点合并方法。仿真结果验证了该算法的有效性。 展开更多
关键词 RBF神经网络 隐层结构 自组织聚类 K-MEANS算法 戴维森堡丁指数 敏感度分析 詹森-香农散度
在线阅读 下载PDF
基于聚合距离参数的改进K-means算法 被引量:28
2
作者 王巧玲 乔非 蒋友好 《计算机应用》 CSCD 北大核心 2019年第9期2586-2590,共5页
针对传统K均值聚类(K-means)算法随机选择初始中心及K值导致的聚类结果不确定且精度不高问题,提出了一种基于聚合距离的改进K-means算法。首先,基于聚合距离参数筛选出优质的初始聚类中心,并将其作用于K-means算法。然后,引入戴维森堡... 针对传统K均值聚类(K-means)算法随机选择初始中心及K值导致的聚类结果不确定且精度不高问题,提出了一种基于聚合距离的改进K-means算法。首先,基于聚合距离参数筛选出优质的初始聚类中心,并将其作用于K-means算法。然后,引入戴维森堡丁指数(DBI)作为算法的准则函数,循环更新聚类直到准则函数收敛,最后完成聚类。改进算法提供了优质的初始聚类中心及K值,避免了聚类结果的随机性。二维数值型仿真数据的聚类结果表明,改进算法在数据样本数达到10 000时仍能保持较好的聚类效果。针对Iris和Seg这两个UCI标准数据集的调整兰德系数,改进算法比传统算法性能分别提高了83.7%和71.0%,最终验证了改进算法比传统算法聚类结果的准确性更高。 展开更多
关键词 聚合距离参数 聚类中心 聚类评判指标 戴维森堡丁指数(DBI) 数据聚类
在线阅读 下载PDF
基于DBI-小波包分解和改进BP神经网络的轴承故障诊断方法研究 被引量:11
3
作者 张玉彦 张金龙 +4 位作者 文笑雨 李浩 孙春亚 王昊琪 乔东平 《河南理工大学学报(自然科学版)》 CAS 北大核心 2023年第1期116-123,共8页
针对轴承故障诊断问题,以振动信号为分析对象,提出DBI-小波包分解和改进BP神经网络的诊断方法。采用4层小波包分解获取振动信号的不同频带特征,引入戴维森堡丁指数(Davies-Bouldin index,DBI)定量评价小波包分解结果,确定小波基函数为F... 针对轴承故障诊断问题,以振动信号为分析对象,提出DBI-小波包分解和改进BP神经网络的诊断方法。采用4层小波包分解获取振动信号的不同频带特征,引入戴维森堡丁指数(Davies-Bouldin index,DBI)定量评价小波包分解结果,确定小波基函数为FK22时达到最佳分解结果。采用改进的BP神经网络对不同频带特征识别,引入弹性梯度下降法解决传统BP神经网络收敛速度慢和梯度消失等问题,提高网络训练速度。同时,针对BP神经网络隐藏层层数及各隐藏层节点个数难以确定的问题,设计正交实验对不同参数组合效果进行验证,选出最佳参数,避免盲目低效调参。对电机滚动轴承进行验证,结果表明平均故障识别准确率达到98.833%。 展开更多
关键词 轴承故障诊断 小波包分解 BP神经网络 戴维森堡丁指数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部