期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进RCMDE与优化随机森林的掘进机截割头故障诊断
1
作者 马天兵 杨婷 +3 位作者 李长鹏 杜菲 史瑞 于平平 《科学技术与工程》 北大核心 2025年第9期3629-3636,共8页
针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截... 针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截割头故障诊断新方法。首先,利用RCMFDE全面表征掘进机截割头故障特征信息,构建故障特征数据集;其次,采用HORF对故障类型进行训练和测试,实现掘进机截割头的故障模式识别;最后,将所提方法运用在掘进机截割头实验数据分析中,并将其与现有的多尺度模糊熵、精细复合多尺度散布熵故障特征提取方法做比较。实验结果显示:RCMFDE在挖掘故障特征信息方面优于其他两种熵方法,而河马随机森林在故障分类方面优于极限学习机和支持向量机等分类器,所提故障识别模型可以更加精确地识别掘进机截割头的故障类型,且识别准确率达到100%。 展开更多
关键词 掘进机 截割振动信号 特征提取 故障诊断 精细复合多尺度模糊散布熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部