期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于感知对抗网络的图像风格迁移方法研究 被引量:1
1
作者 李君艺 尧雪娟 李海林 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第5期624-628,共5页
基于有关图像风格迁移研究成果,结合生成式对抗网络(generative adversarial network,GAN)和感知损失函数,文章提出了基于感知对抗网络(perceptual adversarial network,PAN)的图像风格迁移方法。该方法利用感知损失函数进行对抗训练,... 基于有关图像风格迁移研究成果,结合生成式对抗网络(generative adversarial network,GAN)和感知损失函数,文章提出了基于感知对抗网络(perceptual adversarial network,PAN)的图像风格迁移方法。该方法利用感知损失函数进行对抗训练,通过图像转换网络与判别网络之间的交替优化,生成图与原图在多个网络层次的特征差异能被持续发掘,使生成图的内容和风格更接近原图。实验结果表明,基于PAN的图像风格迁移方法能取得更佳效果。 展开更多
关键词 图像风格迁移 生成式对抗网络(GAN) 感知损失 感知对抗网络(pan)
在线阅读 下载PDF
生成对抗映射网络下的图像多层感知去雾算法 被引量:12
2
作者 李策 赵新宇 +1 位作者 肖利梅 杜少毅 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第10期1835-1843,共9页
雾霾常会影响获取图像的质量,单幅图像去雾是一个具有挑战性的不适定问题.针对传统的去雾方法存在去雾结果颜色失真、适用范围局限等问题,提出一种基于深度网络的去雾算法——生成对抗映射网络的多层感知去雾算法.在训练阶段中,利用生... 雾霾常会影响获取图像的质量,单幅图像去雾是一个具有挑战性的不适定问题.针对传统的去雾方法存在去雾结果颜色失真、适用范围局限等问题,提出一种基于深度网络的去雾算法——生成对抗映射网络的多层感知去雾算法.在训练阶段中,利用生成对抗映射网络里判别网络与生成网络间对抗式训练机制,保证生成网络中参数的最优解;在测试还原过程中,先提取有雾图像中雾气相关特征,并利用训练得到的生成网络对提取特征进行多层感知映射,进而得到反映雾气深度信息的透视率,最终运用得到的透视率实现了图像去雾.实验结果表明,与同类算法相比,该算法能较好地还原出场景中目标的真实色彩,并抑制部分噪声,去雾效果明显. 展开更多
关键词 生成对抗映射网络 多层感知 雾气相关特征
在线阅读 下载PDF
基于生成对抗网络的压缩感知图像重构方法 被引量:5
3
作者 简献忠 张雨墨 王如志 《包装工程》 CAS 北大核心 2020年第11期239-245,共7页
目的为了解决传统压缩感知图像重构方法存在的重构时间长、重构图像质量不高等问题,提出一种基于生成对抗网络的压缩感知图像重构方法。方法基于生成对抗网络思想设计一种由具有稀疏采样功能的鉴别器和具有图像重构功能的生成器组成的... 目的为了解决传统压缩感知图像重构方法存在的重构时间长、重构图像质量不高等问题,提出一种基于生成对抗网络的压缩感知图像重构方法。方法基于生成对抗网络思想设计一种由具有稀疏采样功能的鉴别器和具有图像重构功能的生成器组成的深度学习网络模型,利用对抗损失和重构损失2个部分组成的新的损失函数对网络参数进行优化,完成图像压缩重构过程。结果实验表明,文中方法在12.5%的低采样率下重构时间为0.009s,相较于常用的OMP算法、CoSaMP算法、SP算法和IRLS算法,其峰值信噪比(PSNR)提高了10~12 dB。结论文中设计的方法应用于图像重构时重构时间短,在低采样率下仍能获得高质量的重构效果。 展开更多
关键词 压缩感知 生成对抗网络 图像重构 深度学习
在线阅读 下载PDF
一种基于条件生成对抗网络的高感知图像压缩方法 被引量:8
4
作者 张雪峰 许华文 杨棉子美 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期783-791,共9页
针对如何获得符合人类视觉感知的压缩图像问题,提出了基于条件生成对抗网络的图像压缩模型(HPIC).在HPIC中,首先利用一个超先验概率模型对原始图像进行编码量化,将条件附加标签和残差模块相结合的生成器用于压缩图像的重建,基于深度卷... 针对如何获得符合人类视觉感知的压缩图像问题,提出了基于条件生成对抗网络的图像压缩模型(HPIC).在HPIC中,首先利用一个超先验概率模型对原始图像进行编码量化,将条件附加标签和残差模块相结合的生成器用于压缩图像的重建,基于深度卷积神经网络搭建的判别器则用于区分压缩后的图像和真实图像间的差异.损失函数是基于比特率-失真-感知优化理论来设计的,一方面选用基于预训练Inception网络特征值的感知失真指标来实现具有高感知质量的图像压缩重建,另一方面利用生成对抗网络损失来消除压缩伪影,提高压缩精度.实验结果表明,HPIC在比特率-失真-感知三重权衡中取得了较好的平衡,即使目前的常见算法使用两倍于本文算法的比特率,本文算法在所有的感知指标得分上均优于前者,HPIC仍能够实现具有高感知质量的压缩. 展开更多
关键词 图像压缩 比特率-失真-感知优化理论 条件生成对抗网络 损失函数
在线阅读 下载PDF
基于双向生成对抗网络的图像感知哈希算法 被引量:5
5
作者 马宾 王一利 +3 位作者 徐健 王春鹏 李健 周琳娜 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1405-1412,共8页
本文提出一种基于双向生成对抗网络(Bidirectional Generative Adversarial Network, BiGAN)的无监督感知哈希生成算法,通过编码网络、生成网络和判别网络间的双向迭代对抗,生成具有较强图像语义特征表示能力的感知哈希码.本算法通过在... 本文提出一种基于双向生成对抗网络(Bidirectional Generative Adversarial Network, BiGAN)的无监督感知哈希生成算法,通过编码网络、生成网络和判别网络间的双向迭代对抗,生成具有较强图像语义特征表示能力的感知哈希码.本算法通过在编码网络和生成网络间添加跳接层网络结构,将原始图像不同维度的特征信息传递到生成网络,提高生成图像语义学习能力与网络收敛速度;同时,在对抗损失中添加均方误差(Mean Sequare Error, MSE)损失,增强生成图像的视觉质量与细节表示能力.最后,基于网络间的多重迭代对抗训练,输出兼备相同来源图像鲁棒性和不同来源图像区分性的高性能图像感知哈希码.本研究首次采用大型图像数据库进行算法性能评价,实验结果表明,基双向生成对抗网络的感知哈希生成算法与当前其他最新研究方案相比具有更强的版权认证与来源检测能力. 展开更多
关键词 感知哈希 生成对抗网络 均方误差 来源检测 哈希码 图像内容认证
在线阅读 下载PDF
基于双向生成对抗网络的感知哈希图像内容取证算法 被引量:3
6
作者 马宾 王一利 +4 位作者 徐健 王春鹏 李健 周琳娜 施云庆 《计算机学报》 EI CAS CSCD 北大核心 2023年第12期2551-2572,共22页
传统的感知哈希算法通过提取图像特定属性生成感知哈希序列,难以充分利用原始图像全部特征信息,影响了基于感知哈希的图像内容认证与版权保护能力.本文提出一种基于双向生成对抗网络(Bidirectional Generative Adversarial Network,BiG... 传统的感知哈希算法通过提取图像特定属性生成感知哈希序列,难以充分利用原始图像全部特征信息,影响了基于感知哈希的图像内容认证与版权保护能力.本文提出一种基于双向生成对抗网络(Bidirectional Generative Adversarial Network,BiGAN)的无监督感知哈希图像内容取证算法,基于编码网络、生成网络和判别网络间的双向迭代对抗,生成具有较强图像语义特征表示能力的感知哈希码;并通过在编码网络和生成网络间添加跳接层网络结构,将原始图像不同维度的特征信息传递到生成网络,提高生成网络语义特征学习能力与网络收敛速度;同时,在对抗损失中添加MSE误差损失,增强生成图像的视觉质量与细节表示能力;最后,基于网络间的多重迭代与对抗训练,输出兼具相同内容图像认证鲁棒性和不同内容图像区分敏感性的高性能图像感知哈希码.本研究首次采用大型图像数据库进行算法性能评价,实验结果表明基于双向生成对抗网络的感知哈希图像内容取证算法与当前其他优秀研究方案相比具有更强的图像内容取证性能. 展开更多
关键词 图像取证 生成对抗网络 感知哈希 跳接 均方误差
在线阅读 下载PDF
生成对抗网络进行感知遮挡人脸还原的算法研究 被引量:2
7
作者 魏赟 孙硕 《小型微型计算机系统》 CSCD 北大核心 2020年第2期416-420,共5页
有遮挡人脸图像还原是指通过对遮挡区域的图像进行估计,尽可能使用语义上合理的内容来填补.现有的人脸图像还原算法大多使用预先定义的掩模来模拟遮挡,并未考虑真实场景下的遮挡(如眼镜、口罩等)大小和位置对图像还原的影响.提出了一种... 有遮挡人脸图像还原是指通过对遮挡区域的图像进行估计,尽可能使用语义上合理的内容来填补.现有的人脸图像还原算法大多使用预先定义的掩模来模拟遮挡,并未考虑真实场景下的遮挡(如眼镜、口罩等)大小和位置对图像还原的影响.提出了一种基于深度卷积生成对抗网络的遮挡感知人脸还原方法,通过学习最接近遮挡图像的编码,来推断缺失的内容,并在生成的过程中自动检测出遮挡的区域,此外,为了减少面部信息丢失,保证恢复后的人脸的真实性,引入语义感知网络,以此进一步优化所提模型.对所选数据集的实验表明,所提出的模型效果较好. 展开更多
关键词 遮挡检测 生成对抗网络 语义感知 人脸还原
在线阅读 下载PDF
多层感知器深度卷积生成对抗网络 被引量:7
8
作者 王格格 郭涛 李贵洋 《计算机科学》 CSCD 北大核心 2019年第9期243-249,共7页
生成对抗网络(GAN)是目前图像生成领域中一种新的、有效的训练生成模型方法。深度卷积生成对抗网络(DCGAN)作为GAN的一种延伸,将卷积神经网络引入到生成模型中进行无监督训练。但DCGAN的线性卷积层对于下层数据块是一个广义线性模型,其... 生成对抗网络(GAN)是目前图像生成领域中一种新的、有效的训练生成模型方法。深度卷积生成对抗网络(DCGAN)作为GAN的一种延伸,将卷积神经网络引入到生成模型中进行无监督训练。但DCGAN的线性卷积层对于下层数据块是一个广义线性模型,其抽象层次较低,生成的图像质量不高,并且在模型性能度量方面仅以主观的视觉感受来评判图像质量。针对以上问题,文中提出了一种多层感知器深度卷积生成对抗网络(MPDCGAN),采用多层感知器卷积层取代广义线性模型在输入数据上进行卷积,以捕获图像更深层次的特征,并采用定量评估方法Frechet Inception Distance(FID)衡量图像生成质量。在4种基准数据集上的实验结果表明,采用MPDCGAN生成的图像的 FID 值与图像质量呈负相关关系,且图像生成质量随着 FID 值的降低得到了进一步的提高。 展开更多
关键词 生成对抗网络 深度卷积生成对抗网络 多层感知 FID
在线阅读 下载PDF
基于半监督学习的多层感知器生成对抗网络 被引量:9
9
作者 王格格 郭涛 +1 位作者 余游 苏菡 《小型微型计算机系统》 CSCD 北大核心 2019年第11期2297-2303,共7页
半监督学习通过充分利用大量无标记数据和少量有标记数据来改善学习性能,近年来已成为机器学习领域的研究热点.半监督生成对抗网络SGAN将生成对抗网络扩展到半监督学习,通过在原始无标记输入数据的基础上加入少量有标记数据,并将判别器... 半监督学习通过充分利用大量无标记数据和少量有标记数据来改善学习性能,近年来已成为机器学习领域的研究热点.半监督生成对抗网络SGAN将生成对抗网络扩展到半监督学习,通过在原始无标记输入数据的基础上加入少量有标记数据,并将判别器转换成分类器输出分类结果,以此来解决传统分类问题中因有标记训练数据太少引起的过拟合问题.但SGAN判别器上的线性卷积层提取图像深层次特征的能力较弱,使其在半监督环境下对图像进行分类的准确率不高,且生成的图像质量较差.为此,提出半监督多层感知器生成对抗网络SMPGAN.该网络采用多层感知器卷积层代替SGAN判别器上的线性卷积层来提高抽象层次,并在生成器上使用特征匹配进一步提高图像的分类精度.在不同数量的有标记样本辅助下,SMPGAN的分类精度和图像生成效果均有明显提升. 展开更多
关键词 半监督学习 生成对抗网络 多层感知 特征匹配
在线阅读 下载PDF
基于情境感知生成对抗网络模型的工程知识推荐方法 被引量:4
10
作者 王临科 蒋祖华 +2 位作者 牛建民 黄咏文 李心雨 《计算机集成制造系统》 EI CSCD 北大核心 2022年第3期798-811,共14页
针对现有知识推荐方法因稀疏矩阵和冷启动导致推荐性能不佳的问题,提出一种基于情境感知生成对抗网络模型的知识推荐方法(CGKR)。提出任务相似度概念,同时考虑内容相似度和任务相似度构建知识相关性网络,基于知识相关性网络构建语义激... 针对现有知识推荐方法因稀疏矩阵和冷启动导致推荐性能不佳的问题,提出一种基于情境感知生成对抗网络模型的知识推荐方法(CGKR)。提出任务相似度概念,同时考虑内容相似度和任务相似度构建知识相关性网络,基于知识相关性网络构建语义激活扩散模型,扩展用户历史评分,以全面探知用户兴趣;基于用户个人背景信息和历史行为信息构造用户情境和任务情境;引入生成对抗网络模型,并结合情境信息构建情境感知生成对抗网络模型(CxtGAN);基于训练完成的CxtGAN,为特定任务情境下的目标用户提供个性化知识推荐服务。以某船厂知识管理系统数据为例,进行实例分析与实验研究,结果表明CGKR方法具有较好的知识推荐性能,能够为企业用户提供优质知识推荐服务。 展开更多
关键词 知识推荐 生成对抗网络 情境感知 激活扩散模型 语义网络 知识管理
在线阅读 下载PDF
基于增强型多尺度残差生成对抗网络的图像压缩 被引量:1
11
作者 马婷 刘友鑫 +2 位作者 胡峰 聂伟 吴建芳 《计算机工程与设计》 北大核心 2024年第8期2415-2422,共8页
为解决低码率下更符合人类视觉感知的图像压缩,提出一种基于增强型多尺度残差生成对抗网络的有损压缩方法。在网络框架的自动编码器中,使用一种结构上改进的增强型多尺度残差块,其可以扩大感受野,更容易获得图像的全局信息。引入简易注... 为解决低码率下更符合人类视觉感知的图像压缩,提出一种基于增强型多尺度残差生成对抗网络的有损压缩方法。在网络框架的自动编码器中,使用一种结构上改进的增强型多尺度残差块,其可以扩大感受野,更容易获得图像的全局信息。引入简易注意力模块,帮助网络更加关注图像复杂的部分,减少简单部分的比特。判别器部分采用全新的相对平均判别器,在网络框架中使用LPIPS(learned perceptual image patch similarity)感知损失减轻图像伪影问题。采用两阶段训练的方式解决引入生成对抗网络导致训练不稳定的问题。实验结果表明了在低码率下所提模型的有效性,与之前的工作相比,所提方法在感知失真指标上表现更优,性能提升了65%左右,重建图像更符合人类视觉感知。 展开更多
关键词 低码率 图像压缩 生成对抗网络 多尺度残差块 注意力模块 相对平均判别器 感知损失
在线阅读 下载PDF
基于多重生成对抗网络的智能开关设备状态感知与诊断研究 被引量:27
12
作者 袁培 王舶仲 +5 位作者 毛文奇 蒋毅舟 李鹏 王立德 易进 段浩然 《电力系统保护与控制》 CSCD 北大核心 2021年第6期67-75,共9页
随着电力物联网数据驱动技术的不断发展,传感器采集的设备量测数据规模爆发式增长,海量异构的多源监测数据给智能开关设备的实时状态感知和诊断带来了新的挑战。针对上述问题,提出一种基于多重生成对抗网络和DS证据理论的开关设备状态... 随着电力物联网数据驱动技术的不断发展,传感器采集的设备量测数据规模爆发式增长,海量异构的多源监测数据给智能开关设备的实时状态感知和诊断带来了新的挑战。针对上述问题,提出一种基于多重生成对抗网络和DS证据理论的开关设备状态感知方法。首先基于DS证据理论构造融合视频、温度、压力、姿态传感器等多源数据的基本信任分配,获取表征开关设备状态的特征信息。根据特征信息和状态类别,建立包含样本生成、数据分类和特征识别的多重生成对抗网络。采用比较、关联、聚类等算法,结合随机梯度下降法更新网络层间参数,最终实现对开关设备运行状态的判别和诊断。以某区域电网的开关设备为例,算例分析结果表明该方法能准确地感知设备的实时状态并对异常信息提出告警。 展开更多
关键词 智能开关设备 状态感知 异常诊断 多传感器 多重生成对抗网络
在线阅读 下载PDF
城轨车-地场景下基于CGAN-LSTM网络的OTFS-ISAC系统信道估计
13
作者 杨骞 苏宏升 +1 位作者 陶旺林 刘大为 《通信学报》 北大核心 2025年第2期59-71,共13页
为解决商用B5G/6G城轨车-地场景下通信感知一体化(ISAC)信号传输信道估计问题,提出了一种基于深度学习的信道估计方法。建立基于正交时频空(OTFS)调制的ISAC信号传输系统模型,引入OTFS导频辅助,设计条件生成对抗网络和长短期记忆网络结... 为解决商用B5G/6G城轨车-地场景下通信感知一体化(ISAC)信号传输信道估计问题,提出了一种基于深度学习的信道估计方法。建立基于正交时频空(OTFS)调制的ISAC信号传输系统模型,引入OTFS导频辅助,设计条件生成对抗网络和长短期记忆网络结合的CGAN-LSTM,将混沌博弈优化算法与经典Adam优化器结合,对网络参数进行优化,利用优化网络完成信道估计。仿真结果表明,所提方法在归一化均方误差和误码率方面,优于传统的信道估计方法,为ISAC信号检测和恢复提供必要数据基础。 展开更多
关键词 通信感知一体化 正交时频空 条件生成对抗网络 长短期记忆 混沌博弈优化
在线阅读 下载PDF
结合感知损失与双重对抗网络的低剂量CT图像去噪 被引量:3
14
作者 熊景琦 桑庆兵 胡聪 《计算机工程》 CAS CSCD 北大核心 2023年第2期213-221,230,共10页
低剂量计算机断层扫描(LDCT)成像技术在医学诊断中得到广泛应用,但其斑纹噪声和非平稳条纹伪影复杂,目前多数算法仅依靠推断条件后验概率来实现图像去噪,无法应对LDCT图像噪声复杂、数据量少、先验知识缺乏的问题。提出一种结合感知损... 低剂量计算机断层扫描(LDCT)成像技术在医学诊断中得到广泛应用,但其斑纹噪声和非平稳条纹伪影复杂,目前多数算法仅依靠推断条件后验概率来实现图像去噪,无法应对LDCT图像噪声复杂、数据量少、先验知识缺乏的问题。提出一种结合感知损失的双重对抗网络去噪算法,以实现LDCT图像复原。该算法包含一个去噪器和一个生成器,分别从图像去噪和噪声生成2个角度来建模干净-噪声图像对的联合分布,通过联合学习使得去噪器和生成器相互指导,从而充分学习数据中的噪声信息和清晰图像信息,且学习到的去噪器可以直接用于LDCT图像修复。考虑到通过感知损失学习语义特征差异可以使去噪结果保留更多的细节和边缘信息,提出一种掩膜自监督方法,针对CT图像域训练一个语义特征提取网络用于计算感知损失。实验结果表明,与BM3D、RED-CNN、WGAN-VGG等主流去噪算法相比,该算法可以有效抑制噪声并去除伪影,最大程度地保留边缘轮廓和纹理细节,产生更符合人眼视觉特性的去噪效果,与当下LDCT图像去噪性能较好的SACNN算法相比,所提算法的PSNR和SSIM指标分别提升1.26 dB和1.8%。 展开更多
关键词 双重对抗网络 低剂量CT图像 噪声生成 自监督 感知损失
在线阅读 下载PDF
面向交通场景的运动模糊伪装对抗样本生成方法
15
作者 张肇鑫 黄世泽 +1 位作者 张兵杰 沈拓 《计算机工程》 北大核心 2025年第3期45-53,共9页
在自动驾驶感知系统中,卷积神经网络(CNN)作为关键技术在车辆感知和决策中发挥着重要作用。然而,其面临的对抗样本攻击威胁对自动驾驶系统的安全性和稳定性产生了严重影响。现有的对抗样本生成方法通常直接在图像中添加对抗扰动,导致对... 在自动驾驶感知系统中,卷积神经网络(CNN)作为关键技术在车辆感知和决策中发挥着重要作用。然而,其面临的对抗样本攻击威胁对自动驾驶系统的安全性和稳定性产生了严重影响。现有的对抗样本生成方法通常直接在图像中添加对抗扰动,导致对抗样本视觉质量下降,伪装性不足,易被人类观察者识别。针对这一挑战,引入交通场景中车辆运动引起的图像模糊先验知识,提出一种运动模糊伪装对抗样本生成方法。通过模拟车辆和行人在移动过程中产生的模糊效应,生成具有运动模糊特征的对抗样本。为了保持图像的运动模糊同时有效实现对抗攻击,设计一种目标隐身的对抗样本损失函数。实验结果显示,在ICDAR公共数据集上,图像检测框数量为0,通过Brenner梯度函数得到的图像模糊度指标为69.28,证明了该方法可以生成运动模糊伪装对抗样本。 展开更多
关键词 自动驾驶感知 对抗样本 运动模糊 目标检测 卷积神经网络
在线阅读 下载PDF
基于频率感知与义原增强的文本防御编码
16
作者 罗浩岚 刘万平 +1 位作者 王宝娟 黄东 《计算机工程与设计》 北大核心 2025年第3期749-755,共7页
针对文本防御编码未考虑训练样本中词频的影响,同义词集缺乏囊括性且存在一定噪声的问题,提出一种基于频率感知与义原增强的编码训练方法。引入样本单词频率,利用编码器区分为样本中的低频词与非低频词,分别训练其鲁棒性;替换词集采用... 针对文本防御编码未考虑训练样本中词频的影响,同义词集缺乏囊括性且存在一定噪声的问题,提出一种基于频率感知与义原增强的编码训练方法。引入样本单词频率,利用编码器区分为样本中的低频词与非低频词,分别训练其鲁棒性;替换词集采用义原增强后的样本数据,能够有效扩充现有词集;编码算法能使样本有效训练确保模型原始准确率。在常见数据集上的实验结果表明,编码训练下的模型分类准确率优于之前防御方法,分别在TextCNN与LSTM上降低模型平均误差到3.6%与4.2%。 展开更多
关键词 文本防御编码 深度神经网络 文本分类 同义词替换攻击 频率感知 义原增强 文本对抗样本
在线阅读 下载PDF
基于生成对抗网络的电能质量信号压缩重构方法 被引量:3
17
作者 简献忠 王绪涛 王如志 《控制工程》 CSCD 北大核心 2021年第8期1654-1661,共8页
针对压缩感知在电能质量信号压缩重构方面存在前期稀疏处理过程繁琐、观测矩阵设计困难、压缩重构速度慢等缺点,首次提出一种基于生成对抗网络模型的电能质量信号压缩重构方法。该网络模型由生成器和鉴别器组成。生成器学习样本分布的特... 针对压缩感知在电能质量信号压缩重构方面存在前期稀疏处理过程繁琐、观测矩阵设计困难、压缩重构速度慢等缺点,首次提出一种基于生成对抗网络模型的电能质量信号压缩重构方法。该网络模型由生成器和鉴别器组成。生成器学习样本分布的特性,经过训练后应用到电能质量信号的压缩和重构过程中。鉴别器与生成器相互对抗以提高彼此性能。此外,该方法在原损失函数中加入重构损失和频域损失,进一步提升重构效果。实验结果表明,提出的压缩重构方法不仅避免了前期对信号进行稀疏处理,而且具有重构效果好、重构速度快、稳定性更强的优势。 展开更多
关键词 电能质量信号 压缩感知 生成对抗网络 稀疏度 重构算法
在线阅读 下载PDF
基于改进生成对抗网络的书法字生成算法 被引量:6
18
作者 李云红 段姣姣 +3 位作者 苏雪平 张蕾涛 于惠康 刘杏瑞 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第7期1326-1334,1459,共10页
针对生成对抗网络生成字体存在笔画缺失、字形结构错乱、图像模糊与质量差的问题,提出改进zi2zi生成对抗网络的书法字生成算法.在编码器中引入卷积核为1的残差块,提高生成器提取书法字体细节特征的能力,通过增加上下文感知注意力结构提... 针对生成对抗网络生成字体存在笔画缺失、字形结构错乱、图像模糊与质量差的问题,提出改进zi2zi生成对抗网络的书法字生成算法.在编码器中引入卷积核为1的残差块,提高生成器提取书法字体细节特征的能力,通过增加上下文感知注意力结构提取书法字体的风格特征.在判别器中利用谱归一化增强模型的稳定性,避免因模型训练不稳定而带来的模式崩塌.采用最小绝对误差L1范数约束生成字体边缘特征,使得字体轮廓更加清晰,最终生成2种风格的书法字.颜真卿楷书与赵孟頫行书目标风格数据集的测试结果表明,提出算法的主观客观评价结果均优于对比算法,与zi2zi相比,峰值信噪比分别提高了1.58、1.76 dB,结构相似性分别提高了5.66%、6.91%,感知相似性分别降低了4.21%、6.20%. 展开更多
关键词 书法字生成 深度学习 生成对抗网络 上下文感知注意力 边缘损失
在线阅读 下载PDF
基于改进循环生成式对抗网络的图像去雾方法 被引量:4
19
作者 黄山 贾俊 《计算机工程》 CAS CSCD 北大核心 2022年第12期218-223,231,共7页
针对现有图像去雾方法存在的颜色失真、细节丢失以及去雾效果不自然等问题,提出一种改进的循环生成式对抗网络用于图像去雾。通过添加多尺度鉴别器作为判别器来改进原始网络结构,增强判别能力,引导网络产生更精细自然的无雾图像。同时... 针对现有图像去雾方法存在的颜色失真、细节丢失以及去雾效果不自然等问题,提出一种改进的循环生成式对抗网络用于图像去雾。通过添加多尺度鉴别器作为判别器来改进原始网络结构,增强判别能力,引导网络产生更精细自然的无雾图像。同时重新设计损失函数,使用最小二乘代替交叉熵作为对抗损失,引入循环感知损失,结合原始循环一致性损失组成新的复合损失函数,提高图像颜色与细节恢复的质量。在D-HAZY和SOTS数据集上的实验结果表明:该方法能够生成较为自然的无雾图像,其主观效果和客观指标均优于对比方法,具有更好的去雾能力;与原始循环生成式对抗网络相比,峰值信噪比从19.052 dB提高至23.128 dB,结构相似性指数从0.787提高至0.867。与DehazeNet、AOD-Net与GCANet等主流去雾方法相比,峰值信噪比和结构相似性指数比排名第二的方法分别提升7.1%和4.3%。 展开更多
关键词 图像去雾 循环生成式对抗网络 多尺度鉴别器 对抗损失 循环感知损失
在线阅读 下载PDF
基于生成对抗和双重语义感知的配电网量测数据缺失重构 被引量:33
20
作者 杨玉莲 齐林海 +2 位作者 王红 苏林萍 徐永海 《电力系统自动化》 EI CSCD 北大核心 2020年第18期46-54,共9页
传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特... 传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特征并结合双重语义感知重构约束实现数据缺失重构的方法。其中,基于二维卷积的重构模型和量测数据二维灰度图像化训练增强了模型泛化能力和稳定性。该方法无需先验知识的分布假设与显式物理建模,在保证数据特征提取最大化的同时,有效提高了重构数据的精确性。最后,利用实测数据验证了该方法在重构缺失数据上的有效性。 展开更多
关键词 生成对抗网络 双重语义感知 量测数据 数据缺失重构
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部