本文针对国防科技大学的平面感应脉冲等离子体推力器(IPPT)原型机,设计了一种基于感应涡流斥力原理的快速脉冲气体供给阀.该阀采用截锥型铍青铜簧片作为执行构件,依靠簧片开启过程中弹性变形产生的弹力提供闭合所需回复力,避免了使用额...本文针对国防科技大学的平面感应脉冲等离子体推力器(IPPT)原型机,设计了一种基于感应涡流斥力原理的快速脉冲气体供给阀.该阀采用截锥型铍青铜簧片作为执行构件,依靠簧片开启过程中弹性变形产生的弹力提供闭合所需回复力,避免了使用额外的回复力机构,使阀整体结构得到极大简化.性能测试结果表明,该阀的动作延迟时间小于35μs.在阀腔气体压力为100 k Pa时,最大单脉冲供气量为2.5 mg.响应特性和供气量特性均满足目前IPPT原型机的需求.此外,该阀可通过调节初始充电电压和阀腔气体压力实现供气量调节.该阀可以为后续推力器原型机多工况性能试验提供有力支持.展开更多
为了能够将脉冲等离子体推力器成功地运用于空间,需对其羽流进行研究。将一维MHD双温放电模型的计算结果作为入口条件,运用DSMC(Direct Simulation Monte-Carlo)/PIC(Particle in Cell)流体混合算法一体化模拟实验室PPT羽流。验证计算...为了能够将脉冲等离子体推力器成功地运用于空间,需对其羽流进行研究。将一维MHD双温放电模型的计算结果作为入口条件,运用DSMC(Direct Simulation Monte-Carlo)/PIC(Particle in Cell)流体混合算法一体化模拟实验室PPT羽流。验证计算显示该模型具有一体化模拟脉冲等离子体推力器羽流的能力。对不同初始放电能量下的羽流场进行模拟,给出了离子、中性粒子、电子温度、轴线上质量流率和出口平面返流质量流率的变化情况。计算结果显示高放电能量下返流量更大,同时中性粒子在返流中所占比例也越大。展开更多
文摘本文针对国防科技大学的平面感应脉冲等离子体推力器(IPPT)原型机,设计了一种基于感应涡流斥力原理的快速脉冲气体供给阀.该阀采用截锥型铍青铜簧片作为执行构件,依靠簧片开启过程中弹性变形产生的弹力提供闭合所需回复力,避免了使用额外的回复力机构,使阀整体结构得到极大简化.性能测试结果表明,该阀的动作延迟时间小于35μs.在阀腔气体压力为100 k Pa时,最大单脉冲供气量为2.5 mg.响应特性和供气量特性均满足目前IPPT原型机的需求.此外,该阀可通过调节初始充电电压和阀腔气体压力实现供气量调节.该阀可以为后续推力器原型机多工况性能试验提供有力支持.
文摘为了能够将脉冲等离子体推力器成功地运用于空间,需对其羽流进行研究。将一维MHD双温放电模型的计算结果作为入口条件,运用DSMC(Direct Simulation Monte-Carlo)/PIC(Particle in Cell)流体混合算法一体化模拟实验室PPT羽流。验证计算显示该模型具有一体化模拟脉冲等离子体推力器羽流的能力。对不同初始放电能量下的羽流场进行模拟,给出了离子、中性粒子、电子温度、轴线上质量流率和出口平面返流质量流率的变化情况。计算结果显示高放电能量下返流量更大,同时中性粒子在返流中所占比例也越大。