针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大...针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。展开更多
针对金属涂层缺陷图像分割中存在特征提取能力弱和分割精度低的问题,提出了一种改进的U^(2)-Net分割模型。首先,在U型残差块(RSU)中嵌入改进的增大感受野模块(receptive field block light,RFB_l),组成新的特征提取层,增强对细节特征的...针对金属涂层缺陷图像分割中存在特征提取能力弱和分割精度低的问题,提出了一种改进的U^(2)-Net分割模型。首先,在U型残差块(RSU)中嵌入改进的增大感受野模块(receptive field block light,RFB_l),组成新的特征提取层,增强对细节特征的学习能力,解决了网络由于感受野受限造成分割精度低的问题;其次,在U^(2)-Net分割模型的解码阶段引入有效的边缘增强注意力机制(contour enhanced attention,CEA),抑制网络中的冗余特征,获取具有详细位置信息的特征注意力图,增强了边界与背景信息的差异性,从而达到更精确的分割效果。实验结果表明,该模型在两个金属涂层剥落与腐蚀数据集上的平均交并比、准确率、查准率、召回率和F_1-measure分别达到80.36%、96.29%、87.43%、84.61%和86.00%,相比于常用的SegNet、U-Net以及U^(2)-Net分割网络的性能都有较大提升。展开更多
为解决柔性智能制造过程中对密集工件漏检率高的问题,提出一种基于改进SSD(single shot multiBox detector)算法的目标检测模型。首先,在SSD网络中融入RFB(receptive field block,感受野模块),提高网络的特征提取能力;其次,采用激活函数...为解决柔性智能制造过程中对密集工件漏检率高的问题,提出一种基于改进SSD(single shot multiBox detector)算法的目标检测模型。首先,在SSD网络中融入RFB(receptive field block,感受野模块),提高网络的特征提取能力;其次,采用激活函数PReLU(parametric rectified linear unit,参数化修正线性单元)代替传统的ReLU激活函数,避免部分神经元出现“死亡”现象;然后,使用CIoU(complete intersection over union)对损失函数进行优化;同时,使用平滑标签、融入BN层(batch normalization,批量标准化)等优化方法防止过拟合现象。在构建的密集工件数据集进行实验,平均精度均值达到95.24%,较改进之前算法提高4.42%,满足实际工业需求。展开更多
文摘针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。
文摘由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%.
文摘为解决柔性智能制造过程中对密集工件漏检率高的问题,提出一种基于改进SSD(single shot multiBox detector)算法的目标检测模型。首先,在SSD网络中融入RFB(receptive field block,感受野模块),提高网络的特征提取能力;其次,采用激活函数PReLU(parametric rectified linear unit,参数化修正线性单元)代替传统的ReLU激活函数,避免部分神经元出现“死亡”现象;然后,使用CIoU(complete intersection over union)对损失函数进行优化;同时,使用平滑标签、融入BN层(batch normalization,批量标准化)等优化方法防止过拟合现象。在构建的密集工件数据集进行实验,平均精度均值达到95.24%,较改进之前算法提高4.42%,满足实际工业需求。