期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
全等级上下文压缩激励的SAR舰船实例分割 被引量:3
1
作者 张天文 张晓玲 +1 位作者 邵子康 曾天娇 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第3期357-365,共9页
现有深度学习SAR舰船实例分割方法未考虑特征全等级信息和目标上下文信息,导致了较低实例分割精度。针对上述问题,提出了一种基于全等级上下文压缩激励感兴趣区域ROI提取器的SAR舰船实例分割方法FL-CI-SE-ROIE。FL-CI-SE-ROIE实现了全等... 现有深度学习SAR舰船实例分割方法未考虑特征全等级信息和目标上下文信息,导致了较低实例分割精度。针对上述问题,提出了一种基于全等级上下文压缩激励感兴趣区域ROI提取器的SAR舰船实例分割方法FL-CI-SE-ROIE。FL-CI-SE-ROIE实现了全等级ROI提取,可保留全等级信息,增强了网络多尺度描述能力。FL-CI-SE-ROIE实现了上下文ROI扩充,可获取目标上下文信息,增强了网络背景鉴别能力。FL-CI-SE-ROIE引入了压缩激励SE模块来平衡不同范围的上下文ROI,可抑制背景干扰,进一步提高了实例分割精度。在公开像素级多边形分割SAR舰船检测数据集PSeg-SSDD上的实验结果表明,所提方法的SAR舰船实例分割精度高于现有其他9种对比模型。 展开更多
关键词 深度学习 实例分割 感兴趣区域提取器 合成孔径雷达
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部