期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于改进粒子群算法优化LSTM的短期电力负荷预测 被引量:13
1
作者 崔星 李晋国 +1 位作者 张照贝 李麟容 《电测与仪表》 北大核心 2024年第1期131-136,共6页
电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解... 电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解决上述问题,提出非线性动态调整惯性权重粒子群算法(NIWPSO,nonlinear dynamic inertia weight strategy particle swarm optimization)与LSTM相结合的预测模型NIWPSO-LSTM。利用非线性动态调整惯性权重的方法来提升PSO的全局寻优能力,再通过NIWPSO对LSTM的参数进行优化。实验结果表明,NIWPSO-LSTM预测精度要远高于其他模型,验证了所提方案的可行性。 展开更多
关键词 短期电力负荷预测 机器学习 非线性动态调整惯性权重粒子群算法 LSTM
在线阅读 下载PDF
基于改进粒子群算法的配电网重构策略 被引量:11
2
作者 王庆荣 王瑞峰 《计算机应用》 CSCD 北大核心 2018年第9期2720-2724,共5页
针对有源配电网对安全可靠性的要求较高,而现有的配电网重构算法精度低、速度低的问题,提出了基于蛙跳分组思想的自适应惯性权重的全信息简化粒子群算法。首先,从降低网络有功功率损耗、提高电压稳定性、均衡馈线负荷三个角度考虑,建立... 针对有源配电网对安全可靠性的要求较高,而现有的配电网重构算法精度低、速度低的问题,提出了基于蛙跳分组思想的自适应惯性权重的全信息简化粒子群算法。首先,从降低网络有功功率损耗、提高电压稳定性、均衡馈线负荷三个角度考虑,建立配电网多目标数学模型;然后,通过基于Pareto支配原则,采用模糊隶属函数的标准化满意度将多目标转化为相同量纲、同一属性、相同数量级的单目标,弥补加权法带有主观性、量纲不统一的弊端;最后,为保证种群多样性,避免随机初始化产生大量不可行解,结合蚁群优化(ACO)算法随机生成树和改进粒子群算法制定出一种针对含分布式电源(DG)的多目标配电网重构策略。通过对含DG的IEEE33节点配电网系统仿真验证,实验结果表明,与标准粒子群优化(PSO)算法相比,该重构策略寻优效率提高了41.0%,与重构前相比,该重构策略降低配电网有功损耗41.47%,降低电压偏移指数57.0%,改善系统负荷均衡度31.25%。该重构策略有效提高了寻优精度,提高了寻优速度,从而提高了配电网运行的安全可靠性。 展开更多
关键词 配电网 标准化满意度 自适应惯性全信息简化粒子算法 蛙跳思想 优化算法
在线阅读 下载PDF
基于支持向量回归积和改进粒子群算法的特定区间盾构机作业参数选取 被引量:3
3
作者 许哲东 侯公羽 +1 位作者 杨丽 黄小军 《中国机械工程》 EI CAS CSCD 北大核心 2022年第24期3007-3014,共8页
为实现特定区间盾构机作业参数更准确的选取,提出了基于支持向量回归积(e-SVR)和改进惯性权重降低速度粒子群优化(IIWDSPSO)算法的盾构机作业参数选取模型。基于e-SVR构建掘进参数、地层参数、几何参数与地表沉降值之间的非线性关系模型... 为实现特定区间盾构机作业参数更准确的选取,提出了基于支持向量回归积(e-SVR)和改进惯性权重降低速度粒子群优化(IIWDSPSO)算法的盾构机作业参数选取模型。基于e-SVR构建掘进参数、地层参数、几何参数与地表沉降值之间的非线性关系模型,并基于实际盾构施工数据与人工神经网络模型、随机森林模型进行性能对比分析;通过10组仿真实验分析惯性权重降低速度对算法性能的影响,基于分析改进的粒子群优化算法优化特定地层参数和几何参数区间的掘进参数。结果表明,e-SVR模型对盾构施工数据样本具有更好的拟合和泛化能力,所提出的IIWDSPSO算法具有更好的准确性、稳定性和收敛概率。实际工程应用结果也验证了所提模型求解出的特定区间掘进参数能使地表沉降值相对更小,得到的掘进参数能够为实际工程提供更准确和可靠的参考。 展开更多
关键词 盾构作业参数 支持向量回归积 改进惯性降低速度粒子优化算法 非线性建模
在线阅读 下载PDF
基于AIWCPSO算法的喷浆机械臂运动轨迹优化 被引量:1
4
作者 石灿 檀子良 +4 位作者 雷超 李允旺 徐寒飞 胡乔炜 计振东 《工矿自动化》 CSCD 北大核心 2024年第12期155-165,共11页
针对传统喷浆机械臂轨迹规划算法存在多路径段间过渡突变、频繁启停导致喷浆效率不高和喷浆不均匀等问题,提出了一种自适应惯性权重及加速度系数的粒子群优化(AIWCPSO)算法,并基于该算法实现喷浆机械臂运动轨迹优化。提出了改进多段轨... 针对传统喷浆机械臂轨迹规划算法存在多路径段间过渡突变、频繁启停导致喷浆效率不高和喷浆不均匀等问题,提出了一种自适应惯性权重及加速度系数的粒子群优化(AIWCPSO)算法,并基于该算法实现喷浆机械臂运动轨迹优化。提出了改进多段轨迹规划算法,采用直线加圆弧轨迹的过渡策略,将竖直方向的直线运动替换成圆弧运动,通过正弦加减速启停算法规划机械臂末端启停处的轨迹,以防止加速度突变,中间段的直线和圆弧轨迹进行匀速轨迹规划,实现机械臂末端匀速光滑运动;通过AIWCPSO算法在运动学约束下对运动参数进行优化,得到最优喷浆时间和速度,提升喷浆机械臂工作效率和喷浆均匀度。实验结果表明:与传统喷浆轨迹规划算法相比,改进多段轨迹规划算法喷浆平均效率提高了25.42%,喷浆轨迹均匀度明显改善;采用AIWCPSO算法优化后,喷浆效率提高了1.3308%。 展开更多
关键词 巷道支护 喷浆机械臂 多段轨迹规划算法 正弦加减速启停算法 自适应惯性及加速度系数的粒子优化算法 运动参数优化
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
5
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性自适应改变的混沌粒子算法
在线阅读 下载PDF
基于GPR代理模型和GA-APSO混合优化算法的软基水闸底板脱空反演 被引量:6
6
作者 李火坤 柯贤勇 +3 位作者 黄伟 刘双平 唐义员 方静 《振动与冲击》 EI CSCD 北大核心 2023年第14期1-10,29,共11页
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自... 软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。 展开更多
关键词 软基水闸 底板脱空反演 动力学方法 高斯过程回归(GPR)代理模型 遗传-自适应惯性粒子(GA-APSO)混合优化算法
在线阅读 下载PDF
基于LOGPSO算法的光伏系统MPPT研究 被引量:3
7
作者 王书金 米根锁 《可再生能源》 CAS 北大核心 2017年第11期1620-1625,共6页
在光伏系统最大功率点跟踪过程中,针对太阳辐射强度改变时,粒子群算法易出现收敛速度慢、陷入局部最优等问题,提出了一种惯性权重对数递减粒子群(LOGPSO)算法,该算法将惯性权重以对数形式递减,并加入了对数调整因子,使运行初期的MPPT能... 在光伏系统最大功率点跟踪过程中,针对太阳辐射强度改变时,粒子群算法易出现收敛速度慢、陷入局部最优等问题,提出了一种惯性权重对数递减粒子群(LOGPSO)算法,该算法将惯性权重以对数形式递减,并加入了对数调整因子,使运行初期的MPPT能够较快地确定极大功率值点所对应的电压,运行中期的惯性权重迅速减小,运行后期的MPPT能够精确地搜索到最大功率点所对应的电压。仿真结果表明,在不同的太阳辐射强度条件下,LOGPSO算法能够显著改善光伏系统MPPT中存在的收敛速度慢、收敛精度低等问题。 展开更多
关键词 光伏系统 MPPT 局部阴影 太阳辐射强度突变 惯性对数递减粒子算法
在线阅读 下载PDF
基于自适应模糊神经网络的机器人焊接焊缝外形预测方法 被引量:7
8
作者 陶永 兰江波 +4 位作者 任帆 王田苗 江山 高赫 温宇方 《计算机集成制造系统》 EI CSCD 北大核心 2022年第11期3643-3651,共9页
为提高机器人焊接焊缝外形预测的准确性,提出一种基于直觉模糊C均值聚类和自适应惯性权重粒子群算法(IFCM-APSO)相融合的模糊神经网络焊缝外形预测方法。该方法以T型焊缝的焊脚宽度和焊高高度作为评价标准,选择影响焊接质量的焊接速率... 为提高机器人焊接焊缝外形预测的准确性,提出一种基于直觉模糊C均值聚类和自适应惯性权重粒子群算法(IFCM-APSO)相融合的模糊神经网络焊缝外形预测方法。该方法以T型焊缝的焊脚宽度和焊高高度作为评价标准,选择影响焊接质量的焊接速率、激光功率、送丝速率和保护气体流量这4种变量作为输入参数,对自适应模糊神经网络中隶属函数的中心值和宽度进行优化,以保证机器人焊接的输入和输出参数具有较好的拟合性。最后,经过仿真和实验表明,所提出焊缝外形预测方法能较好地对机器人焊接的输入和输出参数进行非线性拟合,提高了其全局搜索能力和收敛速度,解决了传统模糊神经网络训练过程中容易陷入局部极小点的问题。 展开更多
关键词 直觉模糊C均值聚类 惯性权重粒子群算法 自适应模糊神经网络 机器人焊接 焊缝外形预测
在线阅读 下载PDF
中国股指波动率的智能预测模型与实证检验 被引量:1
9
作者 耿立艳 郭斌 《统计与决策》 CSSCI 北大核心 2016年第7期148-151,共4页
文章提出将改进型粒子群算法与最小二乘支持向量机(LSSVM)相结合的中国股指波动率智能预测方法,利用径向基核函数LSSVM对股指波动率进行建模及预测,并将自适应惯性权重粒子群算法(AIWPSO)和动态加速系数粒子群算法(DACPSO)分别实现径向... 文章提出将改进型粒子群算法与最小二乘支持向量机(LSSVM)相结合的中国股指波动率智能预测方法,利用径向基核函数LSSVM对股指波动率进行建模及预测,并将自适应惯性权重粒子群算法(AIWPSO)和动态加速系数粒子群算法(DACPSO)分别实现径向基核函数LSSVM的参数优化,建立了两种股指波动率的智能预测模型。以日内价格极差作为波动率的代理变量,通过对上证综指和深证成指的实证研究检验了两模型的有效性。检验结果表明,AlWPSO算法优化的径向基核函数LSSVM作为中国股指波动率智能预测模型,具有更高的波动率预测精度和更快的建模速度。 展开更多
关键词 波动率预测 最小二乘支持向量机 自适应惯性权重粒子群算法 动态加速系数粒子算法
在线阅读 下载PDF
基于集合经验模态分解的交直流混合微电网混合储能容量优化配置 被引量:88
10
作者 郭玲娟 魏斌 +1 位作者 韩肖清 李雯 《高电压技术》 EI CAS CSCD 北大核心 2020年第2期527-537,共11页
针对交直流混合微电网并网联络线功率的波动性带来的新能源消纳瓶颈问题和交、直流子网之间交互功率的优化问题,提出了一种混合储能系统容量优化配置方法。首先,考虑系统净负荷功率和分时电价,确定联络线协议功率和混合储能系统需平抑... 针对交直流混合微电网并网联络线功率的波动性带来的新能源消纳瓶颈问题和交、直流子网之间交互功率的优化问题,提出了一种混合储能系统容量优化配置方法。首先,考虑系统净负荷功率和分时电价,确定联络线协议功率和混合储能系统需平抑的总功率;然后,利用集合经验模态分解对混合储能系统总功率进行分析,根据不同滤波阶数下锂电池和超级电容器的充放电功率指令,采用自适应惯性权重的粒子群算法对以锂电池和超级电容器的额定功率和额定容量为优化变量的混合储能容量优化配置模型进行求解;最后,对不同滤波阶数所对应的系统年综合成本进行排序,确定系统年综合成本最小的滤波阶数和对应的储能配置方案。基于某交直流混合微电网进行了算例分析,验证了采用所提方法配置混合储能系统可有效平抑交直流混合微电网并网联络线功率的波动,降低交、直流子网间的换流损耗,提高交直流混合微电网的经济性。 展开更多
关键词 交直流混合微电网 联络线功率 混合储能系统 容量优化配置 集合经验模态分解 自适应惯性权重粒子群算法
在线阅读 下载PDF
市场机制下光伏/小水电/抽水蓄能电站系统容量优化配置 被引量:52
11
作者 罗仕华 胡维昊 +2 位作者 黄琦 韩晓言 陈哲 《电工技术学报》 EI CSCD 北大核心 2020年第13期2792-2804,共13页
在我国电力市场化改革以及新能源发电技术越加成熟的背景下,新能源发电技术在当前电力市场中无疑具有广阔发展前景。基于混合能源系统的经济效益以及清洁环保的现代化能源体系的需求,该文针对电力市场中的新能源发电技术,提出一种市场... 在我国电力市场化改革以及新能源发电技术越加成熟的背景下,新能源发电技术在当前电力市场中无疑具有广阔发展前景。基于混合能源系统的经济效益以及清洁环保的现代化能源体系的需求,该文针对电力市场中的新能源发电技术,提出一种市场机制下光伏/小水电/抽水蓄能电站的混合能源系统容量配置优化方法,旨在获得最大的经济效益。首先建立以光伏电站、小水电站和抽水蓄能电站为主体的混合能源系统模型。其次,基于该模型提出以系统投资成本最小为上层目标函数和以系统获得售电收益最大为下层目标函数的双层规划模型,并采用线性递减惯性权重粒子群算法以及序列二次规划算法对模型的上、下层求解。此外,该模型考虑各个主体投资成本的规模效应。最后,基于收集的数据对混合能源系统容量配置进行仿真分析,得出有储能方式下的混合能源系统在整个项目周期内所获经济效益是无储能方式下的2.6倍,结果验证了提出的模型与方法的有效性。 展开更多
关键词 混合能源系统 双层规划模型 线性递减惯性权重粒子群算法 序列二次规划算法
在线阅读 下载PDF
基于PSODACCIW-VPMCD的滚动轴承智能检测方法 被引量:3
12
作者 刘吉彪 程军圣 马利 《振动与冲击》 EI CSCD 北大核心 2015年第23期42-47,共6页
针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法... 针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。 展开更多
关键词 动态加速常数协同惯性粒子算法(PSODACCIW) 基于变量预测模型的模式识别(VPMCD) 融合 滚动轴承 智能检测
在线阅读 下载PDF
基于灰色关联的LS-SVM道路交通事故预测 被引量:11
13
作者 戢小辉 《计算机应用研究》 CSCD 北大核心 2016年第3期806-809,共4页
为提高道路交通事故的预测精度以及建模速度,在分析道路交通事故影响因素基础上,提出了基于灰色关联分析的LS-SVM道路交通事故预测模型。该模型采用灰色关联分析完成影响因素的相关性分析,结合关联度值,筛选最小二乘向量机模型的输入变... 为提高道路交通事故的预测精度以及建模速度,在分析道路交通事故影响因素基础上,提出了基于灰色关联分析的LS-SVM道路交通事故预测模型。该模型采用灰色关联分析完成影响因素的相关性分析,结合关联度值,筛选最小二乘向量机模型的输入变量,简化LS-SVM模型结构;然后运用动态改变惯性权重自适应粒子群算法(DCW-APSO)对模型参数进行优化选取;最后应用模型预测1996—2000年的综合道路交通事故死亡率,并将预测结果与其他模型进行对比分析。结果表明,相较其他预测模型,该模型具有较快的收敛速度,并能明显提高道路交通事故预测的精度。 展开更多
关键词 道路交通事故 预测 灰色关联分析 最小二乘支持向量机 动态改变惯性自适应粒子算法
在线阅读 下载PDF
最严格水资源管理与优化配置研究 被引量:11
14
作者 钟鸣 范云柱 +1 位作者 向龙 柳王吉 《水电能源科学》 北大核心 2018年第3期26-29,共4页
为分析"三条红线"约束下的水资源优化配置问题,在粒子群优化(PSO)算法的惯性权重项中引入服从正态分布的随机因子,以提高算法寻优效率。在最严格水资源管理制度的指导下,以社会、经济和环境的综合效益最大为目标,建立"... 为分析"三条红线"约束下的水资源优化配置问题,在粒子群优化(PSO)算法的惯性权重项中引入服从正态分布的随机因子,以提高算法寻优效率。在最严格水资源管理制度的指导下,以社会、经济和环境的综合效益最大为目标,建立"三条红线"约束下的水资源优化配置模型。以玉环县为例,应用该算法求解水资源优化配置模型,并推荐最优的水资源配置方案,为玉环县以目标效益最优倒逼产业转型升级的决策方向提供了依据。优化配置结果表明,在水资源优化配置中应用改进惯性权重的粒子群算法求解合理可行。研究成果为"三条红线"约束下的水资源配置研究提供了新思路。 展开更多
关键词 水资源优化配置 三条红线 改进惯性粒子算法 玉环县
在线阅读 下载PDF
提升光伏消纳的分布式储能系统控制方法 被引量:9
15
作者 曾伟 熊俊杰 +2 位作者 马速良 谭宇良 李建林 《储能科学与技术》 CAS CSCD 北大核心 2022年第10期3268-3274,共7页
分布式储能具有分散灵活等特点,多分布式储能协同配合可以解决单一储能调节能力差、范围小的问题,可以进一步提高新能源消纳能力。提高新能源利用率。本工作通过建立一个光伏电站、两个分布式储能系统模型,并通过分析光伏电站出力,利用... 分布式储能具有分散灵活等特点,多分布式储能协同配合可以解决单一储能调节能力差、范围小的问题,可以进一步提高新能源消纳能力。提高新能源利用率。本工作通过建立一个光伏电站、两个分布式储能系统模型,并通过分析光伏电站出力,利用储能系统跟踪光伏出力的特点建立以分布式储能系统出力最小为目标的目标函数,结合发电系统的功率平衡要求、分布式储能系统的电池能量状态(state of energy,SOE)约束、分布式储能系统功率和容量约束,采用线性递减惯性权重粒子群优化算法,旨在在已有的约束条件下,寻求分布式储能系统的最佳效率。通过仿真分析该方法可以提高光伏消纳能力,减少储能系统动作次数,进一步增加储能系统的寿命。 展开更多
关键词 分布式储能 储能出力 功率平衡 线性递减惯性粒子优化算法
在线阅读 下载PDF
联盟链视角下基于IIWPSO-BP的信息安全风险预测模型 被引量:8
16
作者 周新民 罗文敏 +1 位作者 刘俊杰 谢宝 《中国安全科学学报》 CAS CSCD 北大核心 2022年第8期52-60,共9页
为及时发现智慧城市潜在信息安全风险,构建一种基于改进惯性权重的粒子群优化(IIWPSO)算法优化反向传播(BP)(IIWPSO-BP)神经网络算法的信息安全风险预测模型。首先,综合考虑信息拥有者、共享信息、联盟链技术、信息使用者、联盟链管理... 为及时发现智慧城市潜在信息安全风险,构建一种基于改进惯性权重的粒子群优化(IIWPSO)算法优化反向传播(BP)(IIWPSO-BP)神经网络算法的信息安全风险预测模型。首先,综合考虑信息拥有者、共享信息、联盟链技术、信息使用者、联盟链管理和安全措施6个一级指标,构建信息安全风险指标体系;其次,通过量化信息安全风险指标,训练并测试所构建的信息安全风险预测模型;最后,对比分析模型的鲁棒性、精确性和时间复杂度。结果表明:IIWPSO-BP预测模型的平均绝对误差(MAE)为0.1374,平均相对误差(MRE)为0.0385,拟合度为0.9720;与PSO-BP神经网络、BP神经网络相比,预测精度分别提升了37.6%、65.2%。 展开更多
关键词 联盟链 信息安全 改进惯性粒子优化(IIWPSO)算法 反向传播(BP)神经网络 风险预测 智慧城市
在线阅读 下载PDF
AGPSO-MEPP模型在云南省水安全动态评价中的应用 被引量:1
17
作者 祝秀信 《水资源与水工程学报》 CSCD 2017年第3期91-97,104,共8页
从生命安全、经济安全、社会安全和生态安全4个方面选取20个指标构建区域水安全动态评价指标体系和分级标准。利用自治粒子群优化(AGPSO)算法寻优最大熵投影寻踪(MEPP)技术最佳投影方向,提出AGPSOMEPP水安全评价模型,并分别构建加速粒... 从生命安全、经济安全、社会安全和生态安全4个方面选取20个指标构建区域水安全动态评价指标体系和分级标准。利用自治粒子群优化(AGPSO)算法寻优最大熵投影寻踪(MEPP)技术最佳投影方向,提出AGPSOMEPP水安全评价模型,并分别构建加速粒子群优化(APSO)算法、惯性权重线性递减粒子群优化(LDWPSO)算法和基本粒子群优化(PSO)算法-MEPP模型作对比模型对云南省2006-2015年及2020年水安全进行评价。结果表明:AGPSO寻优MEPP目标函数获得的最优值、最差值、平均值和标准差均优于APSO、LDWPSO和PSO算法,具有较好的全局极值寻优能力;AGPSO-MEPP模型对云南省2006-2013年水安全评价为"不安全",2014-2015年评价为"基本安全",2020年评价为"安全"。2006-2015年的10年间云南省水安全随时间呈提升趋势,且提升趋势显著;AGPSO-MEPP模型对云南省水安全评价结果与APSO-MEPP模型相同,但在排序上存在差异;与LDWPSO-MEPP、PSO-MEPP模型在评价结果及排序上均存在差异。其中,与PSO-MEPP模型的评价及排序结果差异最为显著,表明算法的极值寻优能力决定着评价精度的高低。 展开更多
关键词 水安全 最大熵投影寻踪 指标体系 自治粒子优化算法 加速粒子优化算法 惯性线性递减粒子优化算法 粒子优化算法 云南省
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部