In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based o...In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based on the coupled model,the stresses of the modules are analyzed,and it is pointed out that the inherent nonlinearity,the inner coupling,misalignments between the sensors and actuators,and external disturbances are the main issues that should be considered for the maglev engineering.Furthermore,a feedback linearization controller based on the mathematical model of a maglev module is derived,in which the nonlinearity,coupling and misalignments are taken into account.Then,to attenuate the effect of external disturbances,a disturbance observer is proposed and the dynamics of the estimation error is analyzed using the input-to-state stability theory.It shows that the error is negligible under a low-frequency disturbance.However,at the high-frequency range,the error is unacceptable and the disturbances can not be compensated in time,which lead to over designed fluctuations of levitation gap,even a clash between the upper surface of electromagnet and lower surface of guideway.To solve this problem,a novel nonlinear acceleration feedback is put forward to enhancing the attenuation ability of fast varying disturbances.Finally,numerical comparisons show that the proposed controller outperforms the traditional feedback linearization controller and maintains good robustness under disturbances.展开更多
A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robus...A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.展开更多
This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, d...This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.展开更多
This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedba...This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.展开更多
To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows th...To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.展开更多
基金Project(60404003)supported by the National Natural Science Foundation of China
文摘In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based on the coupled model,the stresses of the modules are analyzed,and it is pointed out that the inherent nonlinearity,the inner coupling,misalignments between the sensors and actuators,and external disturbances are the main issues that should be considered for the maglev engineering.Furthermore,a feedback linearization controller based on the mathematical model of a maglev module is derived,in which the nonlinearity,coupling and misalignments are taken into account.Then,to attenuate the effect of external disturbances,a disturbance observer is proposed and the dynamics of the estimation error is analyzed using the input-to-state stability theory.It shows that the error is negligible under a low-frequency disturbance.However,at the high-frequency range,the error is unacceptable and the disturbances can not be compensated in time,which lead to over designed fluctuations of levitation gap,even a clash between the upper surface of electromagnet and lower surface of guideway.To solve this problem,a novel nonlinear acceleration feedback is put forward to enhancing the attenuation ability of fast varying disturbances.Finally,numerical comparisons show that the proposed controller outperforms the traditional feedback linearization controller and maintains good robustness under disturbances.
基金Project(11202230)supported by the National Natural Science Foundation of China
文摘A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.
基金Projects(11302252,11202230)supported by the National Natural Science Foundation of China
文摘This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.
基金Projects(11302252,11202230)supported by the National Natural Science Foundation of China
文摘This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.