期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于XGBoost与Stacking融合模型的恶意程序多分类检测方法
被引量:
9
1
作者
徐国天
沈耀童
《信息网络安全》
CSCD
北大核心
2021年第6期52-62,共11页
当前在恶意程序多分类检测领域,传统静态和动态检测方法受反取证技术影响较大;在新型基于网络流量的检测方法中,由于各类恶意程序流量特征的相似性较大,使用人工提取的数据流特征和传统机器学习方法不能取得较高的准确率。针对上述问题...
当前在恶意程序多分类检测领域,传统静态和动态检测方法受反取证技术影响较大;在新型基于网络流量的检测方法中,由于各类恶意程序流量特征的相似性较大,使用人工提取的数据流特征和传统机器学习方法不能取得较高的准确率。针对上述问题,文章提出一种基于XGBoost与Stacking融合模型的恶意程序多分类检测方法。在获取目标恶意程序对外通信流量并自动提取初始网络特征后,对初始数据集进行预处理和多重特征选择,而后使用基于XGBoost的特征创造算法,在初始特征基础上自动化生成高级特征集,并结合Stacking集成算法实现多模型融合以提升恶意程序多分类检测的准确率。在此过程中,为减少寻找最优参数组合的时间,使用贝叶斯优化方法确定各个模型的最优参数组合,并采取多种正则化策略解决模型过拟合问题。实验结果表明,与其他传统方法相比,该检测方法在恶意程序多分类的准确率上有较大提升。
展开更多
关键词
恶意程序多分类
多层次特征选择
极限梯度提升树
Stacking集成
贝叶斯优化
在线阅读
下载PDF
职称材料
题名
基于XGBoost与Stacking融合模型的恶意程序多分类检测方法
被引量:
9
1
作者
徐国天
沈耀童
机构
中国刑事警察学院网络犯罪侦查系
出处
《信息网络安全》
CSCD
北大核心
2021年第6期52-62,共11页
基金
中央高校基本科研业务费[3242017013]
公安部软科学计划[2020LLYJXJXY031]
+2 种基金
公安部技术研究计划[2016JSYJB06]
辽宁省自然科学基金[2015020091,20180550841,2019-ZD-0167]
辽宁省社会科学规划基金[L16BFX012]。
文摘
当前在恶意程序多分类检测领域,传统静态和动态检测方法受反取证技术影响较大;在新型基于网络流量的检测方法中,由于各类恶意程序流量特征的相似性较大,使用人工提取的数据流特征和传统机器学习方法不能取得较高的准确率。针对上述问题,文章提出一种基于XGBoost与Stacking融合模型的恶意程序多分类检测方法。在获取目标恶意程序对外通信流量并自动提取初始网络特征后,对初始数据集进行预处理和多重特征选择,而后使用基于XGBoost的特征创造算法,在初始特征基础上自动化生成高级特征集,并结合Stacking集成算法实现多模型融合以提升恶意程序多分类检测的准确率。在此过程中,为减少寻找最优参数组合的时间,使用贝叶斯优化方法确定各个模型的最优参数组合,并采取多种正则化策略解决模型过拟合问题。实验结果表明,与其他传统方法相比,该检测方法在恶意程序多分类的准确率上有较大提升。
关键词
恶意程序多分类
多层次特征选择
极限梯度提升树
Stacking集成
贝叶斯优化
Keywords
multiple categories of malicious programs
Multi-level feature selection
extreme gradient boosting
Stacking integration
Bayesian optimization
分类号
TP309 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于XGBoost与Stacking融合模型的恶意程序多分类检测方法
徐国天
沈耀童
《信息网络安全》
CSCD
北大核心
2021
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部