期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于本地差分隐私的异步横向联邦安全梯度聚合方案 被引量:1
1
作者 魏立斐 张无忌 +2 位作者 张蕾 胡雪晖 王绪安 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期3010-3018,共9页
联邦学习作为一种新兴的分布式机器学习框架,通过在用户私有数据不出域的情况下进行联合建模训练,有效地解决了传统机器学习中的数据孤岛和隐私泄露问题。然而,联邦学习存在着训练滞后的客户端拖累全局训练速度的问题,异步联邦学习允许... 联邦学习作为一种新兴的分布式机器学习框架,通过在用户私有数据不出域的情况下进行联合建模训练,有效地解决了传统机器学习中的数据孤岛和隐私泄露问题。然而,联邦学习存在着训练滞后的客户端拖累全局训练速度的问题,异步联邦学习允许用户在本地完成模型更新后立即上传到服务端并参与到聚合任务中,而无需等待其他用户训练完成。然而,异步联邦学习也存在着无法识别恶意用户上传的错误模型,以及泄露用户隐私的问题。针对这些问题,该文设计一种面向隐私保护的异步联邦的安全梯度聚合方案(SAFL)。用户采用本地差分隐私策略,对本地训练的模型添加扰动并上传到服务端,服务端通过投毒检测算法剔除恶意用户,以实现安全聚合(SA)。最后,理论分析和实验表明在异步联邦学习的场景下,提出的方案能够有效识别出恶意用户,保护用户的本地模型隐私,减少隐私泄露风险,并相对于其他方案在模型的准确率上有较大的提升。 展开更多
关键词 安全聚合 本地差分隐私 隐私保护 恶意投毒攻击 异步联邦学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部