期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于增量学习的车联网恶意位置攻击检测研究 被引量:3
1
作者 江荣旺 魏爽 +1 位作者 龙草芳 杨明 《信息安全研究》 CSCD 北大核心 2024年第3期268-276,共9页
近年来,车辆恶意位置攻击检测中主要使用深度学习技术.然而,深度学习模型训练耗时巨大、参数众多,基于深度学习的检测方法缺乏可扩展性,无法适应车联网不断产生新数据的需求.为了解决以上问题,创新地将增量学习算法引入车辆恶意位置攻... 近年来,车辆恶意位置攻击检测中主要使用深度学习技术.然而,深度学习模型训练耗时巨大、参数众多,基于深度学习的检测方法缺乏可扩展性,无法适应车联网不断产生新数据的需求.为了解决以上问题,创新地将增量学习算法引入车辆恶意位置攻击检测中,解决了上述问题.首先从采集到的车辆信息数据中提取关键特征;然后,构建恶意位置攻击检测系统,利用岭回归近似快速地计算出车联网恶意位置攻击检测模型;最后,通过增量学习算法对恶意位置攻击检测模型进行更新和优化,以适应车联网中新生成的数据.实验结果表明,相比SVM,KNN,ANN等方法具有更优秀的性能,能够快速且渐进地更新和优化旧模型,提高系统对恶意位置攻击行为的检测精度. 展开更多
关键词 车联网 恶意位置攻击检测 增量学习 深度学习 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部