针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增...针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增益之间的关系,由分析可知,系统工作在非谐振状态下的恒压输出区间内抗偏移能力更强;然后,设计电感补偿序列,提出恒压输出区间追踪控制策略,实现WPT系统输出电压恒定控制,提高系统的抗偏移能力;最后,搭建仿真模型和实验平台,仿真及实验结果均表明,采用恒压输出区间追踪控制策略,可以有效减小输出电压的波动,验证了系统在强互感干扰下的鲁棒性。相较于无恒压输出区间追踪的WPT系统,所提系统具有更好的输出电压动态调节能力。展开更多
恒压CV(constant-voltage)输出双边LCC补偿感应电能传输IPT(inductive power transfer)系统存在轻载效率低的问题,为了优化CV输出双边LCC补偿IPT系统轻载效率,基于求解近似最优解思想,提出1种双边LCC补偿拓扑的参数设计方法。分析了CV...恒压CV(constant-voltage)输出双边LCC补偿感应电能传输IPT(inductive power transfer)系统存在轻载效率低的问题,为了优化CV输出双边LCC补偿IPT系统轻载效率,基于求解近似最优解思想,提出1种双边LCC补偿拓扑的参数设计方法。分析了CV输出时零相位角ZPA(zero phase angle)条件及松耦合线圈损耗,通过搭建6.6 kW的实验原理样机进行实验验证。实验结果表明,所提补偿参数设计方法可以提高系统效率,尤其是轻载效率,6.6 kW满载效率为95%,1.32 kW轻载效率可达93%。展开更多
在电动汽车无线充电系统中,负载锂电池的充电过程为先恒流再恒压,因此,无线电能传输(wireless power transfer,WPT)系统需要同时具备实现双输出的能力,且在双输出状态之间进行平稳切换。基于此,分析双边LCC(inductor-capacitor-capacit...在电动汽车无线充电系统中,负载锂电池的充电过程为先恒流再恒压,因此,无线电能传输(wireless power transfer,WPT)系统需要同时具备实现双输出的能力,且在双输出状态之间进行平稳切换。基于此,分析双边LCC(inductor-capacitor-capacitor)拓扑实现与负载无关的恒流/恒压输出条件,给出参数设计方法。针对系统可能会随机在不同方向上出现位移的情况,采用了双向同轴平面线圈的结构,即原边线圈由内外2个沿相反方向绕制的线圈串联组成。通过仿真和实验验证了本文提出的电动汽车无线充电系统具备同时实现恒流/恒压输出的能力,且在多方向偏移工况下实现稳定输出。展开更多
为实现感应电能传输(inductivepowertransfer,IPT)系统在负载变化下的恒定电压和高效电能输出,提出一种基于线性自抗扰控制(linear active disturbance rejection control,LADRC)的恒压输出和基于阻抗匹配技术的最大效率跟踪的复合控制...为实现感应电能传输(inductivepowertransfer,IPT)系统在负载变化下的恒定电压和高效电能输出,提出一种基于线性自抗扰控制(linear active disturbance rejection control,LADRC)的恒压输出和基于阻抗匹配技术的最大效率跟踪的复合控制方法。首先,分析LCC-S型IPT系统的参数与效率、输出功率的关系,通过参数优化设计使最优效率达到最大化;然后,在副边采用基于Buck-Boost电路的阻抗匹配技术以实现最大效率跟踪,同时在原边设计一阶LADRC对输出电压进行闭环控制,并给出控制器参数选取规则,所提复合控制方法保证效率和电压2个控制回路之间的解耦运行;最后,搭建实验平台对理论分析进行验证。实验结果表明,当负载电阻从满载到轻载变化时,所提系统可以实现恒压输出,整体效率保持在85.7%,与比例积分控制相比,LADRC对负载扰动和参考电压扰动具有更好的输出电压动态调节作用。展开更多
为了降低感应电能传输(inductive power transfer,IPT)充电系统反馈控制的复杂性,增强系统耦合机构抗偏移能力的同时保证系统恒压(constant voltage,CV)输出,该文基于LCC-S与S-LCC拓扑电路特性提出LCC-S与S-LCC混合拓扑电路并分析...为了降低感应电能传输(inductive power transfer,IPT)充电系统反馈控制的复杂性,增强系统耦合机构抗偏移能力的同时保证系统恒压(constant voltage,CV)输出,该文基于LCC-S与S-LCC拓扑电路特性提出LCC-S与S-LCC混合拓扑电路并分析其抗偏移恒压输出特性;选取double-D quadrature(DDQ)结构线圈作为耦合机构,并提出抗偏移参数设计方法,以实现系统二维平面抗偏移恒压输出。此外,该方法还具有以下明显优点:无需复杂的反馈控制,几乎没有无功输入。最后,该文搭建1k W系统原理样机,在横向和垂向考察抗偏移恒压输出特性。负载在45-120Ω范围内变化时,系统输出电压波动始终介于设定的5%以内,在选定的线圈参数条件下,线圈横向最大偏移50%,而线圈在垂向最多可减小23.33%。实验结果表明该方法有效且可行。展开更多
为解决谐振式多负载无线电能传输WPT(wireless power transfer)系统输出的负载敏感性问题,首先基于电路理论,研究恒压输出单负载WPT系统二端口网络在输出特性与负载无关时的电路参数关系,剖析了阻抗匹配网络的工作原理,由此构造出一种...为解决谐振式多负载无线电能传输WPT(wireless power transfer)系统输出的负载敏感性问题,首先基于电路理论,研究恒压输出单负载WPT系统二端口网络在输出特性与负载无关时的电路参数关系,剖析了阻抗匹配网络的工作原理,由此构造出一种级联式负载无关性多负载WPT系统,并对该系统的传输性能作进一步分析。然后,应用有限元分析软件确定DD线圈和屏蔽磁芯的最优尺寸。最终,搭建一台恒压输出四负载WPT系统实验样机,验证了理论的正确性和系统的可行性。所提系统不含补偿电感,无磁饱和现象,阻抗匹配网络体积小,性价比高。展开更多
针对感应耦合电能传输(inductively coupled power transfer,ICPT)系统负载变化时系统输出的稳恒性问题,本文首先分别对电压型与电流型ICPT系统地负载适应能力进行分析,得出电压型ICPT系统比电流型ICPT系统具有更好地负载适应能力和频...针对感应耦合电能传输(inductively coupled power transfer,ICPT)系统负载变化时系统输出的稳恒性问题,本文首先分别对电压型与电流型ICPT系统地负载适应能力进行分析,得出电压型ICPT系统比电流型ICPT系统具有更好地负载适应能力和频率稳定性地结论。同时提出了一种新型的功率补给及自循环模式地输出控制方法,该方法从系统能量平衡地关系出发,通过对功率补给模式工作时间与自循环模式工作时间比值地控制实现系统输出恒压。该控制方法从能量角度实现控制,有效地避免了该非线性系统地复杂建模及控制设计过程.利用Matlab/Simulink搭建系统模型,仿真验证了该方法地有效性。展开更多
感应电能传输(inductive power transfer,IPT)系统的线圈偏移难以避免,导致系统输出电压平稳性下降。由于全桥逆变器产生方波电压,使谐波难以完全消除。为利用谐波提升系统抗偏移能力,该文设计一种基于基波-谐波并行传输的复合式双频IP...感应电能传输(inductive power transfer,IPT)系统的线圈偏移难以避免,导致系统输出电压平稳性下降。由于全桥逆变器产生方波电压,使谐波难以完全消除。为利用谐波提升系统抗偏移能力,该文设计一种基于基波-谐波并行传输的复合式双频IPT系统,耦合机构接收端选取双极性结构线圈以消除副边线圈间的交叉耦合,结合系统参数设计方法使系统在耦合机构发生偏移的情况下实现自适应恒定电压输出,该系统耦合机构采用单发射双接收结构,较传统基波-谐波并行IPT系统采用双发射双接收的结构所用线材更少,且无需复杂反馈控制。最后,搭建一个200W原理样机验证所提方法正确性和有效性,耦合机构横向偏移33%,同时负载在24~40Φ变化时,系统输出电压波动始终保持在5%以内。展开更多
由于传统的插入式系统结构繁杂且频繁插拔容易发生电火花等危险,因此无线电能传输(wireless power transfer,WPT)系统凭借其固有的优势得到了广泛的研究,逐渐融入各种工业应用中.为了确保电池的性能及使用寿命,有效地为电池提供所需的...由于传统的插入式系统结构繁杂且频繁插拔容易发生电火花等危险,因此无线电能传输(wireless power transfer,WPT)系统凭借其固有的优势得到了广泛的研究,逐渐融入各种工业应用中.为了确保电池的性能及使用寿命,有效地为电池提供所需的恒定充电电流和恒定充电电压是非常必要的.然而在充电过程中,电池的等效电阻会发生显著变化从而导致系统很难在近似零相位角(zero phase angle,ZPA)运行下同时实现与负载无关的恒流输出和恒压输出.鉴于此,提出1种基于S/LCL补偿的WPT系统,该系统可以在2个固定频率下实现具有ZPA运行的恒流和恒压输出.最后,搭建了1台恒流充电为3 A和恒压充电为80 V的验证性实验样机,验证了所设计的WPT系统的正确性和可行性.展开更多
文摘针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增益之间的关系,由分析可知,系统工作在非谐振状态下的恒压输出区间内抗偏移能力更强;然后,设计电感补偿序列,提出恒压输出区间追踪控制策略,实现WPT系统输出电压恒定控制,提高系统的抗偏移能力;最后,搭建仿真模型和实验平台,仿真及实验结果均表明,采用恒压输出区间追踪控制策略,可以有效减小输出电压的波动,验证了系统在强互感干扰下的鲁棒性。相较于无恒压输出区间追踪的WPT系统,所提系统具有更好的输出电压动态调节能力。
文摘在电动汽车无线充电系统中,负载锂电池的充电过程为先恒流再恒压,因此,无线电能传输(wireless power transfer,WPT)系统需要同时具备实现双输出的能力,且在双输出状态之间进行平稳切换。基于此,分析双边LCC(inductor-capacitor-capacitor)拓扑实现与负载无关的恒流/恒压输出条件,给出参数设计方法。针对系统可能会随机在不同方向上出现位移的情况,采用了双向同轴平面线圈的结构,即原边线圈由内外2个沿相反方向绕制的线圈串联组成。通过仿真和实验验证了本文提出的电动汽车无线充电系统具备同时实现恒流/恒压输出的能力,且在多方向偏移工况下实现稳定输出。
文摘为实现感应电能传输(inductivepowertransfer,IPT)系统在负载变化下的恒定电压和高效电能输出,提出一种基于线性自抗扰控制(linear active disturbance rejection control,LADRC)的恒压输出和基于阻抗匹配技术的最大效率跟踪的复合控制方法。首先,分析LCC-S型IPT系统的参数与效率、输出功率的关系,通过参数优化设计使最优效率达到最大化;然后,在副边采用基于Buck-Boost电路的阻抗匹配技术以实现最大效率跟踪,同时在原边设计一阶LADRC对输出电压进行闭环控制,并给出控制器参数选取规则,所提复合控制方法保证效率和电压2个控制回路之间的解耦运行;最后,搭建实验平台对理论分析进行验证。实验结果表明,当负载电阻从满载到轻载变化时,所提系统可以实现恒压输出,整体效率保持在85.7%,与比例积分控制相比,LADRC对负载扰动和参考电压扰动具有更好的输出电压动态调节作用。
文摘为解决谐振式多负载无线电能传输WPT(wireless power transfer)系统输出的负载敏感性问题,首先基于电路理论,研究恒压输出单负载WPT系统二端口网络在输出特性与负载无关时的电路参数关系,剖析了阻抗匹配网络的工作原理,由此构造出一种级联式负载无关性多负载WPT系统,并对该系统的传输性能作进一步分析。然后,应用有限元分析软件确定DD线圈和屏蔽磁芯的最优尺寸。最终,搭建一台恒压输出四负载WPT系统实验样机,验证了理论的正确性和系统的可行性。所提系统不含补偿电感,无磁饱和现象,阻抗匹配网络体积小,性价比高。
文摘针对感应耦合电能传输(inductively coupled power transfer,ICPT)系统负载变化时系统输出的稳恒性问题,本文首先分别对电压型与电流型ICPT系统地负载适应能力进行分析,得出电压型ICPT系统比电流型ICPT系统具有更好地负载适应能力和频率稳定性地结论。同时提出了一种新型的功率补给及自循环模式地输出控制方法,该方法从系统能量平衡地关系出发,通过对功率补给模式工作时间与自循环模式工作时间比值地控制实现系统输出恒压。该控制方法从能量角度实现控制,有效地避免了该非线性系统地复杂建模及控制设计过程.利用Matlab/Simulink搭建系统模型,仿真验证了该方法地有效性。
文摘感应电能传输(inductive power transfer,IPT)系统的线圈偏移难以避免,导致系统输出电压平稳性下降。由于全桥逆变器产生方波电压,使谐波难以完全消除。为利用谐波提升系统抗偏移能力,该文设计一种基于基波-谐波并行传输的复合式双频IPT系统,耦合机构接收端选取双极性结构线圈以消除副边线圈间的交叉耦合,结合系统参数设计方法使系统在耦合机构发生偏移的情况下实现自适应恒定电压输出,该系统耦合机构采用单发射双接收结构,较传统基波-谐波并行IPT系统采用双发射双接收的结构所用线材更少,且无需复杂反馈控制。最后,搭建一个200W原理样机验证所提方法正确性和有效性,耦合机构横向偏移33%,同时负载在24~40Φ变化时,系统输出电压波动始终保持在5%以内。