能量捕获无线传感器网络是解决传统无线传感器网络能量问题的有效途径之一,无线携能通信网络SWIPT(Simultaneous wireless information and power transfer)是其中的一个重要研究方向。研究了一种SWIPT场景,在源节点总功率的约束条件下...能量捕获无线传感器网络是解决传统无线传感器网络能量问题的有效途径之一,无线携能通信网络SWIPT(Simultaneous wireless information and power transfer)是其中的一个重要研究方向。研究了一种SWIPT场景,在源节点总功率的约束条件下,最大化总传输速率。源节点通过在不同的频谱上分配不同的功率发送携能信号给多个中继节点,中继节点对于接收到的携能信号通过功率分配将一部分信号转化为能量,一部分信号解码为信息;中继节点利用捕获的能量将信息转发给目的节点。建立数学模型求解最优的功率分配因子,运用拉格朗日乘数法求得源节点在每个频谱上分配功率的表达式,按照注水算法求得最终分配的功率和最大化的总传输速率,最后通过数值模拟进行了有效性验证。展开更多
[目的]研究沿海沙地不同林地土壤呼吸、总硝化、反硝化速率季节变化,以了解和掌握沿海沙地土壤碳氮动态变化。[方法]应用气压过程分离(Barometric process separation,Ba PS)技术对福建漳州东山县竹林地、湿地松林地、木麻黄林地、桉树...[目的]研究沿海沙地不同林地土壤呼吸、总硝化、反硝化速率季节变化,以了解和掌握沿海沙地土壤碳氮动态变化。[方法]应用气压过程分离(Barometric process separation,Ba PS)技术对福建漳州东山县竹林地、湿地松林地、木麻黄林地、桉树林地的土壤呼吸速率、总硝化速率、反硝化速率季节动态变化进行研究。[结果]不同林地土壤呼吸速率、总硝化速率、反硝化速率季节变化趋势不同,温度与土壤呼吸速率、总硝化速率、反硝化速率呈显著性相关,p H、含水率对不同林地土壤呼吸速率、总硝化速率、反硝化速率影响程度不同。[结论]不同林地土壤的呼吸作用、硝化作用、反硝化作用相互影响,程度各不相同。展开更多
15N同位素稀释技术是测量土壤氮总矿化速率(Nmin)和总硝化速率(Nnit)的有效方法。为了解中国陆地生态系统土壤Nmin和Nnit的空间格局及影响因素,本文基于采用15N同位素稀释技术研究氮总转化速率(室内培养)的121篇文献,收集中国陆地生态系...15N同位素稀释技术是测量土壤氮总矿化速率(Nmin)和总硝化速率(Nnit)的有效方法。为了解中国陆地生态系统土壤Nmin和Nnit的空间格局及影响因素,本文基于采用15N同位素稀释技术研究氮总转化速率(室内培养)的121篇文献,收集中国陆地生态系统(林地、草地、农田)Nmin和Nnit数据进行分析。结果表明:1)全国土壤Nmin和Nnit分别为6.03 mg N kg^-1 d^-1和7.45 mg N kg^-1d^-1。北方土壤Nmin(8.39 mg N kg^-1 d^-1)显著高于南方土壤(4.66 mg N kg^-1 d^-1);Nnit(8.40 mg N kg^-1 d^-1)高于南方土壤(6.96 mg N kg^-1d^-1),但差异性不显著(P>0.05)。2)不同生态系统土壤Nmin和Nnit的大小关系为:草地>农田>林地;农田>草地>林地。草地土壤Nmin与林地、农田差异显著,显著高于林地(P=0.002)、农田(P=0.005);农田土壤Nnit与林地差异显著(P<0.001),与草地差异不显著(P>0.05)。3)北方土壤Nmin和Nnit主要影响因素均为pH,与pH显著正相关;南方土壤Nmin主要影响因素是总氮(Total Nitrogen,TN),与TN显著正相关;Nnit主要影响因素是铵态氮(Ammonium nitrogen,NH4^+-N),与NH4^+-N显著负相关。4)林地生态系统Nmin和Nnit主要影响因素分别为TN和NH+4-N,Nmin与TN显著正相关;Nnit与NH4^+-N显著负相关;草地Nmin和Nnit主要影响因素分别为土壤碳氮比(C/N)和总碳(Total Carbon,TC),Nmin与土壤C/N显著负相关,Nnit与TC显著正相关;农田Nmin和Nnit主要影响因素均为土壤C/N,与土壤C/N显著负相关。展开更多
文摘能量捕获无线传感器网络是解决传统无线传感器网络能量问题的有效途径之一,无线携能通信网络SWIPT(Simultaneous wireless information and power transfer)是其中的一个重要研究方向。研究了一种SWIPT场景,在源节点总功率的约束条件下,最大化总传输速率。源节点通过在不同的频谱上分配不同的功率发送携能信号给多个中继节点,中继节点对于接收到的携能信号通过功率分配将一部分信号转化为能量,一部分信号解码为信息;中继节点利用捕获的能量将信息转发给目的节点。建立数学模型求解最优的功率分配因子,运用拉格朗日乘数法求得源节点在每个频谱上分配功率的表达式,按照注水算法求得最终分配的功率和最大化的总传输速率,最后通过数值模拟进行了有效性验证。
文摘[目的]研究沿海沙地不同林地土壤呼吸、总硝化、反硝化速率季节变化,以了解和掌握沿海沙地土壤碳氮动态变化。[方法]应用气压过程分离(Barometric process separation,Ba PS)技术对福建漳州东山县竹林地、湿地松林地、木麻黄林地、桉树林地的土壤呼吸速率、总硝化速率、反硝化速率季节动态变化进行研究。[结果]不同林地土壤呼吸速率、总硝化速率、反硝化速率季节变化趋势不同,温度与土壤呼吸速率、总硝化速率、反硝化速率呈显著性相关,p H、含水率对不同林地土壤呼吸速率、总硝化速率、反硝化速率影响程度不同。[结论]不同林地土壤的呼吸作用、硝化作用、反硝化作用相互影响,程度各不相同。
文摘15N同位素稀释技术是测量土壤氮总矿化速率(Nmin)和总硝化速率(Nnit)的有效方法。为了解中国陆地生态系统土壤Nmin和Nnit的空间格局及影响因素,本文基于采用15N同位素稀释技术研究氮总转化速率(室内培养)的121篇文献,收集中国陆地生态系统(林地、草地、农田)Nmin和Nnit数据进行分析。结果表明:1)全国土壤Nmin和Nnit分别为6.03 mg N kg^-1 d^-1和7.45 mg N kg^-1d^-1。北方土壤Nmin(8.39 mg N kg^-1 d^-1)显著高于南方土壤(4.66 mg N kg^-1 d^-1);Nnit(8.40 mg N kg^-1 d^-1)高于南方土壤(6.96 mg N kg^-1d^-1),但差异性不显著(P>0.05)。2)不同生态系统土壤Nmin和Nnit的大小关系为:草地>农田>林地;农田>草地>林地。草地土壤Nmin与林地、农田差异显著,显著高于林地(P=0.002)、农田(P=0.005);农田土壤Nnit与林地差异显著(P<0.001),与草地差异不显著(P>0.05)。3)北方土壤Nmin和Nnit主要影响因素均为pH,与pH显著正相关;南方土壤Nmin主要影响因素是总氮(Total Nitrogen,TN),与TN显著正相关;Nnit主要影响因素是铵态氮(Ammonium nitrogen,NH4^+-N),与NH4^+-N显著负相关。4)林地生态系统Nmin和Nnit主要影响因素分别为TN和NH+4-N,Nmin与TN显著正相关;Nnit与NH4^+-N显著负相关;草地Nmin和Nnit主要影响因素分别为土壤碳氮比(C/N)和总碳(Total Carbon,TC),Nmin与土壤C/N显著负相关,Nnit与TC显著正相关;农田Nmin和Nnit主要影响因素均为土壤C/N,与土壤C/N显著负相关。