期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
总体平均经验模式分解与1.5维谱方法的研究 被引量:72
1
作者 陈略 訾艳阳 +1 位作者 何正嘉 成玮 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第5期94-98,共5页
针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方... 针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方法对含有故障特征信息的IMF进行后处理.该方法具有避免模式混淆、抑制高斯白噪声、检测非线性耦合特征等特性,并以此来提取故障的微弱特征信息.根据待处理信号的时频特性与EEMD原理,提出了在EEMD方法中加入高斯白噪声的准则,通过信号仿真验证了EEMD方法的抗混分解能力.将EEMD与1.5维谱方法应用于机车走行部齿轮箱的监测诊断中,成功地提取出齿轮箱大齿轮齿根早期的裂纹故障. 展开更多
关键词 总体平均经验模式分解 1.5维谱 特征提取 齿轮裂纹故障
在线阅读 下载PDF
基于总体平均经验模式分解近似熵和混合PSO-BP算法的轴承故障诊断方法 被引量:9
2
作者 张淑清 黄文静 +3 位作者 胡永涛 宿新爽 陆超 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3048-3054,共7页
针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP... 针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP神经网络的权值和阈值,解决BP网络的全局收敛问题。将信号经EEMD得到的IMF分量与近似熵结合,组成特征向量,再将构造的特征向量输入到PSO-BP神经网络中进行模式识别。实验及工程应用实例证明了该方法的有效性和优越性。 展开更多
关键词 轴承 故障诊断 总体平均经验模式分解 近似熵 混合粒子群神经网络
在线阅读 下载PDF
改进的噪声总体集合经验模式分解方法在轴承故障诊断中的应用 被引量:5
3
作者 阮荣刚 李友荣 +1 位作者 易灿灿 肖涵 《机械设计与制造》 北大核心 2019年第1期153-157,共5页
在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improv... 在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)轴承故障诊断方法。通过对比分析仿真信号和实测信号可以得知:ICEEMDAN方法可以改善信号重构质量,具有良好的自适应性,能够提高故障信号的信噪比,从而可以有效地识别并提取有用的故障特征信息。 展开更多
关键词 自适应噪声总体集合经验模式分解 本征模态函数 故障诊断 特征提取
在线阅读 下载PDF
基于集总经验模式分解和支持向量机的液压泵故障预测研究 被引量:12
4
作者 田海雷 李洪儒 许葆华 《中国机械工程》 EI CAS CSCD 北大核心 2013年第7期926-931,共6页
液压泵的性能直接影响整个液压系统的正常工作,为此需要对其进行状态监测和故障预测。采集液压泵的振动信号,运用集总经验模式分解(EEMD)和平滑能量算子解调相结合的方法进行包络解调;采取小波包分析方法得到了故障特征向量;在研究支持... 液压泵的性能直接影响整个液压系统的正常工作,为此需要对其进行状态监测和故障预测。采集液压泵的振动信号,运用集总经验模式分解(EEMD)和平滑能量算子解调相结合的方法进行包络解调;采取小波包分析方法得到了故障特征向量;在研究支持向量机回归估计基本原理的基础上,建立了小波包分解和支持向量机相结合的预测模型。采用液压泵历史数据对模型进行了验证,结果表明,基于支持向量机的预测模型和故障映射模型可以有效地对液压泵进行故障预测。 展开更多
关键词 集总经验模式分解(eemd) 能量算子 小波包 支持向量机 液压泵
在线阅读 下载PDF
基于总体平均经验模态分解的语音增强算法研究 被引量:4
5
作者 陈建明 杨龙 《计算机应用与软件》 2017年第9期328-333,共6页
总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD... 总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD和结合小波阈值去噪思想,提出改进的EEMD方法。首先对原始信号进行EEMD分解,得到一系列IMF分量;其次对筛选后的每个IMF计算噪声强度;然后采用小波启发式阈值估计噪声并计算阈值;最后以软阈值的方式滤除每个IMF中噪声并重构信号还原出增强的语音。通过分析仿真信号和实测信号,结果表明:该算法对带噪语音有很好的滤波效果,与其他同类算法相比提高信噪比2~4 d B。 展开更多
关键词 总体平均经验模态分解(eemd) 小波阈值去噪 语音增强算法
在线阅读 下载PDF
基于总体平均经验模态分解和一步式字典学习联合去噪的语音端点检测算法 被引量:3
6
作者 张开生 赵小芬 +1 位作者 王泽 宋帆 《科学技术与工程》 北大核心 2020年第35期14536-14542,共7页
针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先... 针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先利用EEMD算法对输入语音进行分解得到本征模式分量(intrinsic mode function,IMF),然后使用OS-DL算法分别对纯净语音信号与噪声信号进行训练,得到纯净语音信号和噪声信号的幅度谱字典,进而对幅度谱进行稀疏表示,利用得到的系数矩阵重新构建出语音信号频谱,将重构出的语音信号频谱经过傅里叶逆变换得到降噪后的语音信号,最后对降噪后的语音信号利用均匀子带频带方差法进行端点检测。实验结果表明,该算法在复杂环境信噪比低于-10 dB情况下检测准确率仍可达到85%以上,且平均检测时间缩短至传统端点检测算法的1/3。 展开更多
关键词 总体平均经验模态分解(eemd)算法 一步式字典(OS-DL)算法 稀疏表示 子带频带方差 端点检测
在线阅读 下载PDF
基于EEMD样本熵和GK模糊聚类的机械故障识别 被引量:31
7
作者 王书涛 李亮 +1 位作者 张淑清 孙国秀 《中国机械工程》 EI CAS CSCD 北大核心 2013年第22期3036-3040,3044,共6页
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态... 针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 展开更多
关键词 总体平均经验模式分解(eemd) 样本熵 GK模糊聚类 机械故障识别
在线阅读 下载PDF
基于EEMD气液两相流差压信号时频分析 被引量:5
8
作者 孙斌 刘彤 赵鹏 《实验流体力学》 CAS CSCD 北大核心 2014年第5期47-52,共6页
为研究气液两相流流动过程的动态特性,采用V形内锥作为测量装置,通过高频差压变送器获得不同流型下的动态信号,提出了一种基于总体平均经验模式分解(EEMD)的气液两相流时频分析方法。通过对不同流型下的气液两相流的差压信号进行分析,... 为研究气液两相流流动过程的动态特性,采用V形内锥作为测量装置,通过高频差压变送器获得不同流型下的动态信号,提出了一种基于总体平均经验模式分解(EEMD)的气液两相流时频分析方法。通过对不同流型下的气液两相流的差压信号进行分析,研究了气液两相流的流动机理,为气液两相流流型及流量的准确测量奠定理论基础。分析发现EEMD的抗混分解能力很好,可以准确地提取两相流差压信号的频率成分及其时变情况,为今后两相流的识别提供理论基础,具有较高的工程应用价值。 展开更多
关键词 总体平均经验模式分解(eemd) 气液两相流 时频分析 两相流流型
在线阅读 下载PDF
EEMD能量熵在配电变压器绕组状态监测中的应用 被引量:14
9
作者 臧状 陈江波 +1 位作者 李辉 林莘 《高压电器》 CAS CSCD 北大核心 2015年第11期187-193,共7页
利用振动法在线监测配电变压器绕组的状态关键在于如何从振动信号中提取有效的特征。为了更有效地监测与诊断变压器绕组的状态,搭建了某配电变压器多次短路冲击试验及负载试验时的振动信号监测平台,利用总体平均经验模态分解(ensemble e... 利用振动法在线监测配电变压器绕组的状态关键在于如何从振动信号中提取有效的特征。为了更有效地监测与诊断变压器绕组的状态,搭建了某配电变压器多次短路冲击试验及负载试验时的振动信号监测平台,利用总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)对变压器绕组的振动信号进行分析并求解其能量熵值,提出一种基于EEMD能量熵的配电变压器绕组状态监测与故障诊断的方法。实验结果表明,EEMD能够有效地提取配电变压器绕组振动信号的特征,得到振动信号各频带内的能量分布状态,可准确地在线监测与诊断配电变压器绕组故障。 展开更多
关键词 变压器绕组 振动 总体平均经验模态分解(eemd) 能量熵 状态监测
在线阅读 下载PDF
基于快速谱峭度图的EEMD内禀模态分量选取方法 被引量:20
10
作者 蒋超 刘树林 +1 位作者 姜锐红 王波 《振动.测试与诊断》 EI CSCD 北大核心 2015年第6期1173-1178,1206,共6页
针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD... 针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD分解获得的一组无模式混淆的IMF,计算原信号及各个IMF的快速谱峭度图,选择每个快速谱峭度图中谱峭度最大值所处的频带作为参考频带,比较各个IMF的参考频带与原信号谱峭度最大值所处频带之间的从属关系,筛选出反应故障特征的敏感IMF,为后续故障诊断提供特征信息。将该方法应用于模拟仿真信号及滚动轴承滚动体故障信号,验证了方法的有效性。 展开更多
关键词 总体平均经验模式分解 快速谱峭度图 冲击信号 故障诊断
在线阅读 下载PDF
基于EEMD模糊熵的PCA-GG滚动轴承聚类故障诊断 被引量:28
11
作者 许凡 方彦军 张荣 《计算机集成制造系统》 EI CSCD 北大核心 2016年第11期2631-2642,共12页
针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的... 针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的原始信号进行分解,得到若干个固有模式分量,并使用样本熵与模糊熵计算其熵值。通过主成分分析法对熵特征向量进行可视化降维,并作为模糊C均值、GK(GustafsonKessel)与GG聚类算法的输入,实现对滚动轴承的故障诊断。利用分类系数和平均模糊熵对上述聚类结果进行评价与对比。通过实验表明,所设计的模型能对熵特征向量进行可视化降维,且其故障识别聚类效果优于其他方法。 展开更多
关键词 滚动轴承 故障诊断 模糊熵 总体平均经验模式分解 Gath-Geva聚类
在线阅读 下载PDF
EEMD的非平稳信号降噪及其故障诊断应用 被引量:27
12
作者 吕建新 吴虎胜 田杰 《计算机工程与应用》 CSCD 北大核心 2011年第28期223-227,共5页
针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于... 针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于故障诊断。利用EEMD对非平稳振动信号进行自适应的分解,有效抑制经典经验模式分解的可能出现的模式混叠现象,再以所得的各固有模式分量(Intrinsic Mode Function,IMF)的过零率作为噪声评判准则,重构过零率阈值范围内的非噪声分量以实现信号降噪。另外,计算非噪声分量的能量矩作为故障特征提输入二叉树支持向量机实现的柴油机故障诊断验证了该方法有效性。 展开更多
关键词 往复机械 信号降噪 特征提取 过零率分析 总体平均经验模式分解 能量矩
在线阅读 下载PDF
一种基于EEMD-SVD和FCM的轴承故障诊断方法 被引量:10
13
作者 张立国 康乐 +1 位作者 金梅 李盼 《计量学报》 CSCD 北大核心 2016年第1期67-70,共4页
提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量... 提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量进行奇异值分解,然后将得到的奇异值矩阵作为特征向量,通过FCM模糊聚类进行识别。实验结果表明,此方法可有效地对轴承故障类型进行识别。 展开更多
关键词 计量学 总体平均经验模式分解 奇异值分解 模糊C均值聚类 轴承故障诊断
在线阅读 下载PDF
改进的自适应EEMD方法及其应用 被引量:11
14
作者 何星 王宏力 +1 位作者 姜伟 王林 《系统仿真学报》 CAS CSCD 北大核心 2014年第4期869-873,共5页
针对目前总体经验模式分解(EEMD)方法中两个参数依靠人工选择难以准确获取的问题,提出了一种可自适应确定二者取值的改进EEMD方法。首先通过提取信号中的高频成分来确定加入白噪声的幅值,再根据减小白噪声影响的统计规律得到总体平均次... 针对目前总体经验模式分解(EEMD)方法中两个参数依靠人工选择难以准确获取的问题,提出了一种可自适应确定二者取值的改进EEMD方法。首先通过提取信号中的高频成分来确定加入白噪声的幅值,再根据减小白噪声影响的统计规律得到总体平均次数。同时,为提高分解效率及降低白噪声影响,在EEMD过程中引入有限带宽高斯白噪声消除模态混叠,实现对信号的快速准确分解。信号仿真试验表明改进EEMD方法可以得到比EMD和原始EEMD更加高效的分解结果。最后将其应用于混合信号输入的模拟电路故障特征提取中,以输出响应EEMD分解得到的IMF能量作为特征进行不同故障的分类,仿真结果表明该方法提取的电路各状态特征可作为故障识别和诊断的依据。 展开更多
关键词 总体经验模式分解 自适应 白噪声 模拟电路 故障特征
在线阅读 下载PDF
基于EEMD和二代小波变换的表面肌电信号消噪方法 被引量:14
15
作者 席旭刚 朱海港 罗志增 《传感技术学报》 CAS CSCD 北大核心 2012年第11期1488-1493,共6页
为了更好地消除混杂在表面肌电信号(sEMG)中的噪声,提出了一种基于总体平均经验模式分解(EEMD)和二代小波变换的sEMG消噪新方法。首先对信号加入白噪声处理后进行经验模态分解(EMD),然后对高频的内蕴模式函数(IMF)分量进行二代小波阈值... 为了更好地消除混杂在表面肌电信号(sEMG)中的噪声,提出了一种基于总体平均经验模式分解(EEMD)和二代小波变换的sEMG消噪新方法。首先对信号加入白噪声处理后进行经验模态分解(EMD),然后对高频的内蕴模式函数(IMF)分量进行二代小波阈值消噪处理,最后把处理后的高频IMF分量与低频IMF分量进行叠加,重构后的信号即为去噪信号。实验结果表明,该方法融合了二代小波与EEMD的优点,能更好的消除噪声,最大限度的保留有用信号,并具有更高的信噪比。 展开更多
关键词 表面肌电信号 消噪 总体平均经验模式分解 二代小波
在线阅读 下载PDF
EEMD近似熵和SVM在柴油机传动系统中的故障诊断研究 被引量:10
16
作者 别锋锋 刘杨 +1 位作者 裴峻峰 范文华 《机械设计与制造》 北大核心 2015年第3期24-27,31,共5页
柴油机发电机组结构复杂,故障类型多样,其动力传动部件兼具往复机械与旋转机械的振动特性。传统的频谱分析主要通过利用傅里叶变换将在时域内难于分辩的信号映射到频域内进行分析,这对于具有平稳特点的原始信号比较有效,但是对于柴油发... 柴油机发电机组结构复杂,故障类型多样,其动力传动部件兼具往复机械与旋转机械的振动特性。传统的频谱分析主要通过利用傅里叶变换将在时域内难于分辩的信号映射到频域内进行分析,这对于具有平稳特点的原始信号比较有效,但是对于柴油发电机组而言,频谱分析难以提取其频率分量,因此难以实现故障诊断。通过总体平均经验模式分解(EEMD)的方法获得其本征模式函数的近似熵,将该近似熵作为特征向量结合支持向量机(SVM)进行分类,从而实现柴油发电机组的故障识别。通过实验仿真和某柴油发电机组振动异常问题的实测试验表明,该方法可以准确有效的提取其故障信息和频率,为柴油发电机组传动机构故障诊断提供支持。 展开更多
关键词 振动与波 故障诊断 总体平均经验模式分解 支持向量机 传动部件
在线阅读 下载PDF
摩擦振动信号的EEMD和多重分形去趋势波动分析 被引量:5
17
作者 李精明 魏海军 +3 位作者 魏立队 孙迪 杨智远 梅立强 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第9期1204-1208,1214,共6页
为了研究摩擦副磨合磨损过程中摩擦振动变化规律,实现通过摩擦振动识别摩擦副的磨合磨损状态,在摩擦磨损试验机上进行了船用柴油机缸套—活塞环摩擦副摩擦磨损试验。应用总体经验模式分解对摩擦振动信号进行分解,获得若干个无模式混叠... 为了研究摩擦副磨合磨损过程中摩擦振动变化规律,实现通过摩擦振动识别摩擦副的磨合磨损状态,在摩擦磨损试验机上进行了船用柴油机缸套—活塞环摩擦副摩擦磨损试验。应用总体经验模式分解对摩擦振动信号进行分解,获得若干个无模式混叠的本征模式分量。利用多重分形去趋势波动分析(Multifractal detrended fluctuation analysis,MFDFA)对重构获得的摩擦振动特征信号进行分析,得到摩擦振动信号的MFDFA谱图,并根据谱图求取摩擦振动信号的多重分形谱参数。研究结果表明,总体经验模式分解能够实现微弱摩擦振动特征信号的提取,MFDFA谱图及其参数可以表征摩擦振动信号的特征。 展开更多
关键词 总体经验模式分解 多重分形去趋势波动分析 谱参数 摩擦振动 HURST指数 特征提取
在线阅读 下载PDF
基于经验小波变换的地震资料噪声压制方法 被引量:11
18
作者 覃发兵 徐振旺 +4 位作者 啜晓宇 张小明 郭乃川 董玉文 陈伟 《中国石油勘探》 CAS 北大核心 2018年第5期100-110,共11页
噪声压制是地震资料处理中重要的环节,目前已有的去噪技术存在着噪声去除不干净、有效信号丢失、不能处理非线性非平稳信号等问题。经验小波变换(Empirical Wavelet Transform,简写为EWT)是一种能自适应分解原始信号的算法,其相较于经... 噪声压制是地震资料处理中重要的环节,目前已有的去噪技术存在着噪声去除不干净、有效信号丢失、不能处理非线性非平稳信号等问题。经验小波变换(Empirical Wavelet Transform,简写为EWT)是一种能自适应分解原始信号的算法,其相较于经典的经验模态分解(Empirical Mode Decomposition,简写为EMD)具有更好的自适应性和完善的数学理论基础。将EWT算法引入到地震资料噪声压制中,选取合适的小波函数并利用EWT算法对目标地震信号进行自适应分解,得到其各个频率尺度的固有模态分量;然后根据原始地震信号的主频设定阈值范围,选取主频值在阈值范围内的固有模态分量进行重构,最终获取去噪后的地震信号。结果表明将EWT噪声压制算法应用于数值模型和实际地震资料中,可以很好地实现有效信号和噪声的分离,结果均比常规算法的去噪效果要好。 展开更多
关键词 经验模态分解(EMD) 总体经验模态分解(eemd) 经验小波变换(EWT) 固有模态分量(IMF) 去噪
在线阅读 下载PDF
上证综指波动特征及收益率影响因素研究——基于EEMD和VAR模型分析 被引量:20
19
作者 王晓芳 王瑞君 《南开经济研究》 CSSCI 北大核心 2012年第6期82-99,共18页
总体经验模式分解(EEMD)是Norden E.Huang等人提出的一种最新的数据处理方法。本文通过EEMD将上证综指分解为高频分量、低频分量和趋势项三个分量,结合各结构分量的波动特征发现,高频分量对上证综指的解释率较低,低频分量和趋势项对上... 总体经验模式分解(EEMD)是Norden E.Huang等人提出的一种最新的数据处理方法。本文通过EEMD将上证综指分解为高频分量、低频分量和趋势项三个分量,结合各结构分量的波动特征发现,高频分量对上证综指的解释率较低,低频分量和趋势项对上证综指的解释率较高。进而运用VAR模型分别分析低频分量收益率与趋势项收益率的影响因素,结果显示,M2增长率是长期内影响两者的最主要因素,并且M2增长率对趋势项收益率的影响高于对低频分量收益率的影响;趋势项受同业拆借利率和工业增加值增长率的影响明显,而低频分量则受自身影响较大。 展开更多
关键词 上证综指 总体经验模式分解 固有模式函数 VAR模型
在线阅读 下载PDF
基于EEMD的样本熵的滚动轴承AP聚类故障诊断 被引量:8
20
作者 许凡 方彦军 孔政敏 《仪表技术与传感器》 CSCD 北大核心 2017年第6期129-135,共7页
针对滚动轴承聚类故障诊断需要事先确定聚类数目问题,提出了一种基于总体均值经验模式分解(EEMD)样本熵(SE)的相似近邻传播(AP)聚类故障诊断模型,该模型首先用EEMD方法将滚动轴承振动信号分解为一系列的内禀模式函数(IMFs),其次使用相... 针对滚动轴承聚类故障诊断需要事先确定聚类数目问题,提出了一种基于总体均值经验模式分解(EEMD)样本熵(SE)的相似近邻传播(AP)聚类故障诊断模型,该模型首先用EEMD方法将滚动轴承振动信号分解为一系列的内禀模式函数(IMFs),其次使用相关系数法确定IMF个数,然后使用SE计算其熵值,最后选择第1~3个IMF-SE值作为AP聚类算法的输入。实验结果表明:在没有预先划分聚类数目的情况下,AP聚类方法对滚动轴承的故障诊断效果较好。 展开更多
关键词 总体均值经验模式分解 样本熵 滚动轴承 故障诊断 AP聚类
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部