针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承...针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承故障诊断方法。首先对轴承振动信号进行噪声参数最优ELMD分解并得到一系列窄带乘积函数(Product Function,PF),然后计算各PF分量能量以构造能量特征向量,最后将高维能量特征向量作为最小二乘支持向量机的输入来识别轴承故障类型。通过对轴承故障振动信号分析,结果表明噪声参数最优ELMD方法能有效地抑制模态混叠,与LS-SVM结合可以准确地识别轴承的工作状态和故障类型。展开更多
文摘针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承故障诊断方法。首先对轴承振动信号进行噪声参数最优ELMD分解并得到一系列窄带乘积函数(Product Function,PF),然后计算各PF分量能量以构造能量特征向量,最后将高维能量特征向量作为最小二乘支持向量机的输入来识别轴承故障类型。通过对轴承故障振动信号分析,结果表明噪声参数最优ELMD方法能有效地抑制模态混叠,与LS-SVM结合可以准确地识别轴承的工作状态和故障类型。
文摘机械设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal Parameter Maxim Correlated Kurtosis Deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean Decomposition, ELMD)相结合的轴承复合故障诊断方法;首先利用排列熵值、包络谱稀疏度分别筛选MCKD中的最优滤波器长度L与冲击周期T,提取滚动轴承主故障;然后通过ELMD方法将非平稳信号分解为若干个分量,筛去主故障信息后,再次利用最优参数MCKD进行次故障诊断。通过对轴承信号的分析,验证了该方法能有效分离复合故障信号,具有一定的实用性。