期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
有机玻璃在液体闪烁体环境中的老化研究 被引量:2
1
作者 胡彧 周凡 +2 位作者 郑晨超 陈志平 侯少静 《塑料工业》 CAS CSCD 北大核心 2016年第4期81-84,105,共5页
为了研究有机玻璃在液体闪烁体环境中老化后力学性能的变化情况,开展了老化试验。将有机玻璃试样分别浸泡在50、60以及70℃液体闪烁体中进行人工加速老化处理,并对老化30、60、124、180 d以及未老化处理的试样进行了拉伸性能测试,获得... 为了研究有机玻璃在液体闪烁体环境中老化后力学性能的变化情况,开展了老化试验。将有机玻璃试样分别浸泡在50、60以及70℃液体闪烁体中进行人工加速老化处理,并对老化30、60、124、180 d以及未老化处理的试样进行了拉伸性能测试,获得了试样在三种温度液体闪烁体环境中老化后的力学性能随老化时间的变化规律,并分析了老化机理。利用阿累尼乌斯方程外推法对有机玻璃长期力学性能进行预测,推算出有机玻璃在20℃液体闪烁体环境中使用20 a后的拉伸强度下降了约10%。 展开更多
关键词 有机玻璃 液体闪烁体 人工加速老化 老化性能预测
在线阅读 下载PDF
PEMFCs degradation prediction based on ENSACO-LSTM
2
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部