Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attenti...Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified.展开更多
This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes seco...This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients (CR, Cr, and CE) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the CR increases with increasing wave number, kd, and with a decreasing permeable wall part, din. The Cr follows the opposite trend. The CE slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the CR while increasing the Cr. At lower values of kd, a decreasing porosity increases the CE, but for high values of kd, a decreasing porosity reduces the Ce. The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd〈0.5 Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd〉0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.展开更多
The continuous detonation wave engine(CDWE)can be considered to reduce the environmental conditions generated by pulsed detonation engine(PDE)while reducing the importance of initiation issue and simplifying some ...The continuous detonation wave engine(CDWE)can be considered to reduce the environmental conditions generated by pulsed detonation engine(PDE)while reducing the importance of initiation issue and simplifying some integration aspects.Specific experimental programs are performed by MBDA and Lavrentiev Institute to study CDWE operating mode and to address some key points for the feasibility of an operational rotating wave engine for space launcher.It is found that such engine can deliver impressive thrust in a very small package(275 daN for internal diameter of 50 mm and length of 100 mm,kerosene-oxygen engine)and that can be increased with the use of a diverging nozzle.Due to the geometry of the combustion chamber,a plug or aerospike nozzle seems to be the best design,the thrust vectoring capability of this engine(with the local change of the mass flow rate)being a way to solve the problem of attitude control.The heat fluxes are very high but located mostly near the injection wall.This point will help the gasification of the liquid component injected inside the combustion chamber.Some preliminary tests are performed to evaluate the capability of C/SiC composite materials to sustain the very severe mechanical environment generated by the rotating detonation waves.Beyond these first steps,a large scale ground demonstrator allowing to address all issues for a continuous detonation rocket engine using LH2/LOx mixture is designed by MBDA.As the first step toward the development of this large scale engine,a small scale demo is tested in Spring 2010.展开更多
The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This ...The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid(VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation forfurther studying the hydrodynamic performance of a propeller in waves.展开更多
The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover con...The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.展开更多
文摘Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified.
文摘This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients (CR, Cr, and CE) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the CR increases with increasing wave number, kd, and with a decreasing permeable wall part, din. The Cr follows the opposite trend. The CE slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the CR while increasing the Cr. At lower values of kd, a decreasing porosity increases the CE, but for high values of kd, a decreasing porosity reduces the Ce. The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd〈0.5 Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd〉0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.
文摘The continuous detonation wave engine(CDWE)can be considered to reduce the environmental conditions generated by pulsed detonation engine(PDE)while reducing the importance of initiation issue and simplifying some integration aspects.Specific experimental programs are performed by MBDA and Lavrentiev Institute to study CDWE operating mode and to address some key points for the feasibility of an operational rotating wave engine for space launcher.It is found that such engine can deliver impressive thrust in a very small package(275 daN for internal diameter of 50 mm and length of 100 mm,kerosene-oxygen engine)and that can be increased with the use of a diverging nozzle.Due to the geometry of the combustion chamber,a plug or aerospike nozzle seems to be the best design,the thrust vectoring capability of this engine(with the local change of the mass flow rate)being a way to solve the problem of attitude control.The heat fluxes are very high but located mostly near the injection wall.This point will help the gasification of the liquid component injected inside the combustion chamber.Some preliminary tests are performed to evaluate the capability of C/SiC composite materials to sustain the very severe mechanical environment generated by the rotating detonation waves.Beyond these first steps,a large scale ground demonstrator allowing to address all issues for a continuous detonation rocket engine using LH2/LOx mixture is designed by MBDA.As the first step toward the development of this large scale engine,a small scale demo is tested in Spring 2010.
基金Supported by the National Natural Science Foundation of China (51379043, 41176074, 51209048, 51409063), High Tech Ship Research Project of Ministry of Industry and Technology (G014613002), and the Support Plan for Youth Backbone Teachers of Harbin Engineering University (HEUCFQ 1408)
文摘The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid(VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation forfurther studying the hydrodynamic performance of a propeller in waves.
文摘The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.