Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may ...Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.展开更多
With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of op...With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of optical fiber connectors were investigated. The return loss of optical fiber connectors is 32CD*238dB before polishing. The results show that dry polishing(i.e. no polishing fluid) with Al2O3 has less influence on return loss of optical fiber connectors, while dry polishing with SiO2 reduces return loss to about 20dB because of the end-face of optical fiber contaminated. The wet polishing(i.e. using distilled water as polishing fluid) with Al2O3 or SiO2 can increase return loss to 45CD*250dB, but wet polishing with Al2O3 may produce optical fiber undercut depth of 80CD*2140nm. Wet polishing with SiO2 should be preferentially selected for optical fiber connectors and polishing time should be controlled within 20CD*230s.展开更多
Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive wer...Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.展开更多
基金Project(2024JJ2073)supported by the Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProjects(2023YFC3807205,2019YFC1904704)+4 种基金supported by the National Key R&D Program of ChinaProject(52178443)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0109)supported by Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.
文摘With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of optical fiber connectors were investigated. The return loss of optical fiber connectors is 32CD*238dB before polishing. The results show that dry polishing(i.e. no polishing fluid) with Al2O3 has less influence on return loss of optical fiber connectors, while dry polishing with SiO2 reduces return loss to about 20dB because of the end-face of optical fiber contaminated. The wet polishing(i.e. using distilled water as polishing fluid) with Al2O3 or SiO2 can increase return loss to 45CD*250dB, but wet polishing with Al2O3 may produce optical fiber undercut depth of 80CD*2140nm. Wet polishing with SiO2 should be preferentially selected for optical fiber connectors and polishing time should be controlled within 20CD*230s.
基金Project(50872052) supported by the National Natural Science Foundation of ChinaProject(2009AA05Z313) supported by the National High Technology Research and Development Program of ChinaProject supported by the Commission of Science,Technology and Industry for National Defence,China
文摘Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.