To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil...To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.展开更多
The performance analysis and simulation of coding schemes based on the modeling Ka band fixed satellite channel have been presented. The results indicate that concatenated codes with large inner interleaving depth ha...The performance analysis and simulation of coding schemes based on the modeling Ka band fixed satellite channel have been presented. The results indicate that concatenated codes with large inner interleaving depth have good performance and high spectrum efficiency. The studies also show that simple block interleaving is very effective in combating the slow frequency nonselective fading of Ka band.展开更多
Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray...Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.展开更多
文摘To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.
文摘The performance analysis and simulation of coding schemes based on the modeling Ka band fixed satellite channel have been presented. The results indicate that concatenated codes with large inner interleaving depth have good performance and high spectrum efficiency. The studies also show that simple block interleaving is very effective in combating the slow frequency nonselective fading of Ka band.
文摘Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.