局部气垫双体船是一种新型高性能船舶,其气垫高度、片体间距、气封泄流高度等因素对快速性具有重要的影响。文中基于SBD(simulation based design)技术,采用非支配解排序遗传算法分别对局部气垫双体船在越峰段与设计航速段的总阻力值进...局部气垫双体船是一种新型高性能船舶,其气垫高度、片体间距、气封泄流高度等因素对快速性具有重要的影响。文中基于SBD(simulation based design)技术,采用非支配解排序遗传算法分别对局部气垫双体船在越峰段与设计航速段的总阻力值进行双目标优化设计。结果表明:在优化目标所在的航速范围内获得了较好的效果,体现出该优化方法在局部气垫双体船阻力性能优化设计中的优越性。展开更多
为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(archi...为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(archive based micro genetic algorithm,AMGA)对前舱盖进行多目标优化。针对多目标优化产生的Pareto解集,提出一种基于模糊层次分析-逼近理想解排序(fuzzy analytic hierarchy process-technique for order preference by similarity to ideal solution,FAHP-TOPSIS)法对Pareto非劣解进行综合性能排名,主客观相结合地选择出最优方案。结果表明,在满足性能要求的前提下,最优一体化前舱盖质量降低了32.14%,轻量化效果显著。展开更多
合理有效的加氢站网络规划布局,对于大规模推广燃料电池汽车等氢能产业具有重要意义。综合考虑加氢站网络的上下游环节,基于氢源以及交通网络对加氢站进行经济性分析,搭建了加氢站网络用氢成本模型以及流量捕获模型。结合快速非支配遗...合理有效的加氢站网络规划布局,对于大规模推广燃料电池汽车等氢能产业具有重要意义。综合考虑加氢站网络的上下游环节,基于氢源以及交通网络对加氢站进行经济性分析,搭建了加氢站网络用氢成本模型以及流量捕获模型。结合快速非支配遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ)与理想解评价法(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS),以最小化加氢站网络用氢成本、最大化捕获交通流量为目标,得到加氢站网络的最优规划布局方案(站点个数、规模、位置及氢源选择)。最后,以一个27节点氢源、25节点交通网络为例,分别针对不同氢源原料价格以及运输距离的情况进行优化计算,在优化布局方案下,加氢站网络用氢成本远远低于当前国内加氢站用氢成本(约70元/kg),而捕获的交通流量也达到了总交通流量的70%,算例优化结果进一步说明了规划布局方法的可行性与有效性,对中国加氢站网络的规划布局具有一定的指导意义。展开更多
文摘局部气垫双体船是一种新型高性能船舶,其气垫高度、片体间距、气封泄流高度等因素对快速性具有重要的影响。文中基于SBD(simulation based design)技术,采用非支配解排序遗传算法分别对局部气垫双体船在越峰段与设计航速段的总阻力值进行双目标优化设计。结果表明:在优化目标所在的航速范围内获得了较好的效果,体现出该优化方法在局部气垫双体船阻力性能优化设计中的优越性。
文摘为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(archive based micro genetic algorithm,AMGA)对前舱盖进行多目标优化。针对多目标优化产生的Pareto解集,提出一种基于模糊层次分析-逼近理想解排序(fuzzy analytic hierarchy process-technique for order preference by similarity to ideal solution,FAHP-TOPSIS)法对Pareto非劣解进行综合性能排名,主客观相结合地选择出最优方案。结果表明,在满足性能要求的前提下,最优一体化前舱盖质量降低了32.14%,轻量化效果显著。
文摘合理有效的加氢站网络规划布局,对于大规模推广燃料电池汽车等氢能产业具有重要意义。综合考虑加氢站网络的上下游环节,基于氢源以及交通网络对加氢站进行经济性分析,搭建了加氢站网络用氢成本模型以及流量捕获模型。结合快速非支配遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ)与理想解评价法(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS),以最小化加氢站网络用氢成本、最大化捕获交通流量为目标,得到加氢站网络的最优规划布局方案(站点个数、规模、位置及氢源选择)。最后,以一个27节点氢源、25节点交通网络为例,分别针对不同氢源原料价格以及运输距离的情况进行优化计算,在优化布局方案下,加氢站网络用氢成本远远低于当前国内加氢站用氢成本(约70元/kg),而捕获的交通流量也达到了总交通流量的70%,算例优化结果进一步说明了规划布局方法的可行性与有效性,对中国加氢站网络的规划布局具有一定的指导意义。