针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-...针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。展开更多
针对实际档案库房操作空间的动态约束性,常见的运动规划算法难以满足快速在线规划的问题,分别从规划速度和动态空间在线规划两个方向进行研究.首先,提出一种新型快速搜索随机树法(rapidly-exploring random trees,RRT),基于剪枝和路径...针对实际档案库房操作空间的动态约束性,常见的运动规划算法难以满足快速在线规划的问题,分别从规划速度和动态空间在线规划两个方向进行研究.首先,提出一种新型快速搜索随机树法(rapidly-exploring random trees,RRT),基于剪枝和路径细化策略能够大幅减少无用节点计算和冗余路径运动.其次,将人工势场法与RRT算法相结合,新节点拓展时会受到期望为当前势场合力的高斯分布的影响,在满足对动态障碍物的在线运动规划的同时提高了算法的拓展能力.最后,通过仿真结果证明,新型RRT算法在拓展效率上的高效性和混合运动规划算法在动态规划和探索效率上的优越性.展开更多
针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问...针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问题。基于降维概念的胞元法,将C构型空间(configuration space,C空间)划分为大小相等的单元格,解决经典RRT中最近邻搜索(nearest neighbor search,NNS)在计算时间和资源方面效率低的问题。实验结果表明:在相同实验条件下,改进的RRT算法比双向RRT算法计算时间减少89.5%,能提高计算时间效率和提升搜寻路径质量,具有一定的参考价值。展开更多
为提高果园机器人在果园中作业的自主性、安全性和效率,需要进行有效合理的运动规划。针对传统RRT^(*)(Rapidly exploring random tree star)全局路径规划算法在连续走廊式环境下存在搜索效率低、采样点利用率低、生成路径折线多转角大...为提高果园机器人在果园中作业的自主性、安全性和效率,需要进行有效合理的运动规划。针对传统RRT^(*)(Rapidly exploring random tree star)全局路径规划算法在连续走廊式环境下存在搜索效率低、采样点利用率低、生成路径折线多转角大等问题,以阿克曼底盘果园喷雾机器人为运动模型,提出一种改进双向RRT^(*)的果园喷雾机器人运动规划算法。首先,根据激光雷达建立果园二维平面地图,将果树和障碍物均视为障碍物区域,并结合喷雾机器人本体尺寸,对障碍物进行膨胀化处理;然后,通过改进双向RRT^(*)算法搜索路径,搜索路径过程中结合动态末梢节点导向和势场导向进行偏置采样,并对初步生成的路径进行路径点去冗余以及相邻折线段转角约束处理;最后,采用三阶准均匀B样条曲线对处理后的路径点进行轨迹优化,在优化过程中主要考虑轨迹的碰撞检测和喷雾机器人底盘曲率约束。试验结果表明,相较于传统双向RRT^(*)算法,本文所提出的改进算法规划时间平均减少57.5%,采样点利用率平均提高28.55个百分点,最终路径长度平均缩短7.14%;经三阶准均匀B样条曲线优化后所得轨迹在有、无障碍物两种环境下均满足喷雾机器人最大曲率约束,且仅在换行以及障碍物处存在转弯行为,符合喷雾机器人作业轨迹条件,提高了喷雾机器人的工作效率和自主性。展开更多
文摘针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。
文摘针对实际档案库房操作空间的动态约束性,常见的运动规划算法难以满足快速在线规划的问题,分别从规划速度和动态空间在线规划两个方向进行研究.首先,提出一种新型快速搜索随机树法(rapidly-exploring random trees,RRT),基于剪枝和路径细化策略能够大幅减少无用节点计算和冗余路径运动.其次,将人工势场法与RRT算法相结合,新节点拓展时会受到期望为当前势场合力的高斯分布的影响,在满足对动态障碍物的在线运动规划的同时提高了算法的拓展能力.最后,通过仿真结果证明,新型RRT算法在拓展效率上的高效性和混合运动规划算法在动态规划和探索效率上的优越性.
文摘针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问题。基于降维概念的胞元法,将C构型空间(configuration space,C空间)划分为大小相等的单元格,解决经典RRT中最近邻搜索(nearest neighbor search,NNS)在计算时间和资源方面效率低的问题。实验结果表明:在相同实验条件下,改进的RRT算法比双向RRT算法计算时间减少89.5%,能提高计算时间效率和提升搜寻路径质量,具有一定的参考价值。
文摘为提高果园机器人在果园中作业的自主性、安全性和效率,需要进行有效合理的运动规划。针对传统RRT^(*)(Rapidly exploring random tree star)全局路径规划算法在连续走廊式环境下存在搜索效率低、采样点利用率低、生成路径折线多转角大等问题,以阿克曼底盘果园喷雾机器人为运动模型,提出一种改进双向RRT^(*)的果园喷雾机器人运动规划算法。首先,根据激光雷达建立果园二维平面地图,将果树和障碍物均视为障碍物区域,并结合喷雾机器人本体尺寸,对障碍物进行膨胀化处理;然后,通过改进双向RRT^(*)算法搜索路径,搜索路径过程中结合动态末梢节点导向和势场导向进行偏置采样,并对初步生成的路径进行路径点去冗余以及相邻折线段转角约束处理;最后,采用三阶准均匀B样条曲线对处理后的路径点进行轨迹优化,在优化过程中主要考虑轨迹的碰撞检测和喷雾机器人底盘曲率约束。试验结果表明,相较于传统双向RRT^(*)算法,本文所提出的改进算法规划时间平均减少57.5%,采样点利用率平均提高28.55个百分点,最终路径长度平均缩短7.14%;经三阶准均匀B样条曲线优化后所得轨迹在有、无障碍物两种环境下均满足喷雾机器人最大曲率约束,且仅在换行以及障碍物处存在转弯行为,符合喷雾机器人作业轨迹条件,提高了喷雾机器人的工作效率和自主性。