期刊文献+
共找到405篇文章
< 1 2 21 >
每页显示 20 50 100
快速自适应经验模态分解方法及轴承故障诊断 被引量:7
1
作者 陈凯 李富才 李鸿光 《振动.测试与诊断》 EI CSCD 北大核心 2016年第4期647-652,807,共6页
提出一种快速自适应经验模态分解(fast and adaptive empirical mode decomposition,简称FAEMD),其算法结构和本征模态函数的特点与经验模态分解(empirical mode decomposition,简称EMD)类似。采用顺序统计滤波器代替三次样条来拟合曲线... 提出一种快速自适应经验模态分解(fast and adaptive empirical mode decomposition,简称FAEMD),其算法结构和本征模态函数的特点与经验模态分解(empirical mode decomposition,简称EMD)类似。采用顺序统计滤波器代替三次样条来拟合曲线,简易的终止准则使耗机时间大幅减小。该方法可以快速、有效、准确地分解信号,能够避免终止准则和端点效应问题,改善模态混叠和耗时问题。在滚动轴承故障诊断的应用中,效果表现良好。 展开更多
关键词 经验模态分解 快速自适应经验模态分解 滚动轴承 顺序统计滤波器
在线阅读 下载PDF
快速自适应经验模态分解方法的基本原理及其性能评估 被引量:7
2
作者 周义 李鸿光 《振动与冲击》 EI CSCD 北大核心 2016年第3期14-19,共6页
经验模态分解是一种有效的信号分解方法,尤其是针对非平稳非线性信号。然而,随着研究的深入,学者们发现该方法中存在着诸多弊端。根据Bhuiyan的研究,提出了一种针对一维信号的快速自适应经验模态分解方法。通过大量的数值仿真,证明这种... 经验模态分解是一种有效的信号分解方法,尤其是针对非平稳非线性信号。然而,随着研究的深入,学者们发现该方法中存在着诸多弊端。根据Bhuiyan的研究,提出了一种针对一维信号的快速自适应经验模态分解方法。通过大量的数值仿真,证明这种方法不但能克服传统方法的弊端、得到高质量的分解结果,还能大幅度地提高计算效率。 展开更多
关键词 经验模态分解 快速自适应经验模态分解 数值仿真
在线阅读 下载PDF
基于快速自适应经验模态分解的高速经编机振动分析 被引量:1
3
作者 陈志昊 包文杰 +3 位作者 李富才 静波 黄朝林 孙建文 《纺织学报》 EI CAS CSCD 北大核心 2023年第4期204-211,共8页
针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模... 针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模态函数(IMF),然后计算各IMF分量与原信号的相关性,结合经编机运动特点,判断其中相关性最大的本征模态函数为机构运动分量并去除,最后将剩余分量重组实现结构振动信号的提取。将该方法应用于经编机振动故障诊断中,对动态振动数据进行处理,结合静态固有频率测试,成功提取出与实际故障现象相同的信号频率特征,判断出经编机在高转速下振动过大的原因,为后续经编机振动优化提供了参考。 展开更多
关键词 高速经编机 振动分析 自适应经验模态分解 相关性分析 故障诊断
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
4
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法 被引量:2
5
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
在线阅读 下载PDF
一种添加部分自适应噪声的集成经验模态分解方法 被引量:1
6
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 白噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
7
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
基于快速自适应的二维经验模态分解的图像去噪算法 被引量:7
8
作者 刘佩 贾建 +1 位作者 陈莉 安影 《计算机科学》 CSCD 北大核心 2019年第11期260-266,共7页
为了能够对图像进行自适应的分解,并准确刻画分解系数的分布状态,提出了一种新的基于快速自适应二维经验模态分解的图像去噪算法。该算法首先对图像进行快速自适应二维经验模态分解,通过确定分解后以噪声主导的子带的个数,进一步利用正... 为了能够对图像进行自适应的分解,并准确刻画分解系数的分布状态,提出了一种新的基于快速自适应二维经验模态分解的图像去噪算法。该算法首先对图像进行快速自适应二维经验模态分解,通过确定分解后以噪声主导的子带的个数,进一步利用正态逆高斯模型对以噪声主导的子带系数分布进行建模;然后使用贝叶斯最大后验概率估计理论从模型导出相应的阈值;最后采用最优线性插值阈值函数算法完成去噪。仿真结果表明,对于添加不同标准差大小高斯白噪声的测试图像,所提算法在峰值信噪比上相比sym4小波去噪、双变量阈值去噪、邻近算子的全变分算法和重叠组稀疏的全变分算法分别平均提高了4.36 dB,0.85 dB,0.78 dB和0.48 dB,结构相似性指数也有不同程度的提高,有效地保留了更多的图像细节。实验结果证明,所提算法在视觉性能和评价指标方面均优于对比算法。 展开更多
关键词 快速自适应二维经验模态分解 正态逆高斯模型 贝叶斯最大后验概率估计理论 最优线性插值阈值 图像去噪
在线阅读 下载PDF
快速自适应二维经验模态分解在SAR目标识别中的应用研究 被引量:5
9
作者 胡媛媛 韩彦龙 《电光与控制》 CSCD 北大核心 2021年第8期40-43,87,共5页
针对合成孔径雷达(SAR)图像目标识别问题,提出基于快速自适应二维经验模态分解(FABEMD)的方法。FABEMD可实现对SAR图像的快速分解,获得描述目标低频至高频信息的多层次固态模函数(BIMF)。基于结构相似性指标剔除多层次BIMF中的噪声成分... 针对合成孔径雷达(SAR)图像目标识别问题,提出基于快速自适应二维经验模态分解(FABEMD)的方法。FABEMD可实现对SAR图像的快速分解,获得描述目标低频至高频信息的多层次固态模函数(BIMF)。基于结构相似性指标剔除多层次BIMF中的噪声成分,保留高鉴别力部分。分类阶段采用联合稀疏表示对保留的BIMF进行表征分类。基于MSTAR数据集对所提方法进行测试,结果验证了其性能优势。 展开更多
关键词 合成孔径雷达 目标识别 快速自适应二维经验模态分解 结构相似性 联合稀疏表示
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
10
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:7
11
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
在线阅读 下载PDF
基于经验模态分解的自适应滤波算法及其应用 被引量:8
12
作者 孔国杰 张培林 +1 位作者 徐龙堂 吴烽 《信号处理》 CSCD 北大核心 2009年第6期958-962,共5页
在对炮膛进行检测时,由于温度、光照强度等影响,使得测得的信号带有很大的噪声,当噪声频带很宽时,自适应滤波器的参数设置比较困难,致使去噪效果不明显。为此,提出了一种基于经验模态分解的自适应滤波算法,该算法基于信号和噪声经过经... 在对炮膛进行检测时,由于温度、光照强度等影响,使得测得的信号带有很大的噪声,当噪声频带很宽时,自适应滤波器的参数设置比较困难,致使去噪效果不明显。为此,提出了一种基于经验模态分解的自适应滤波算法,该算法基于信号和噪声经过经验模态分解后在不同的IMF上有不同的特征,即先对信号进行经验模态分解,然后对各个高频IMF信号分别选用不同的滤波参数,进行自适应滤波处理。通过实验对比研究了该算法与普通自适应去噪、多尺度EMD滤波的降噪效果,实验表明,该算法具有很好的去噪效果。将该算法应用于炮膛检测系统中身管内径测量信号的降噪处理,取得了满意的效果。 展开更多
关键词 经验模态分解 自适应滤波 炮膛检测 去噪
在线阅读 下载PDF
基于经验模态分解及近似熵的输电线路单相自适应重合闸 被引量:19
13
作者 兰华 艾涛 张桂兰 《电网技术》 EI CSCD 北大核心 2009年第20期211-214,共4页
根据经验模态分解和近似熵算法,提出了一种针对输电线路单相接地故障的故障类型诊断方法,该方法具有一定的抗干扰能力,可以快速判断故障类型,以提高重合闸成功率。线路故障仿真结果验证了该方法的有效性和实用性。
关键词 经验模态分解(EMD) 近似熵 单相自适应重合闸 瞬时性故障 永久性故障
在线阅读 下载PDF
基于经验模态分解和自适应噪声对消算法的窄带干扰抑制 被引量:9
14
作者 沈宏 张蒲 +1 位作者 徐其惠 曹贝贞 《高压电器》 CAS CSCD 北大核心 2009年第1期8-10,14,共4页
在局部放电在线检测中,自适应噪声对消算法是当前抑制窄带干扰的有效方法。由于窄带干扰频率范围很宽,滤波参数不易设置,同时实测时的窄带干扰在时频域都表现强烈,局部放电信号会完全淹没于干扰之中,使得一般改进噪声对消算法不能取得... 在局部放电在线检测中,自适应噪声对消算法是当前抑制窄带干扰的有效方法。由于窄带干扰频率范围很宽,滤波参数不易设置,同时实测时的窄带干扰在时频域都表现强烈,局部放电信号会完全淹没于干扰之中,使得一般改进噪声对消算法不能取得较好效果。为此,笔者提出一种改进经验模态分解的噪声对消算法,首先在频域中降低干扰幅值,接着利用经验模态分解的分频特性将宽频带的窄带干扰分解到不同频带,各频带内的窄带干扰频率相差有限,然后进行自适应噪声对消,以达到较好的滤波性能。仿真和实际数据验证了该算法的有效性。 展开更多
关键词 故障诊断 局部放电 窄带干扰 经验模态分解 自适应噪声对消器
在线阅读 下载PDF
基于自适应投影多元经验模态分解的电力系统强迫振荡源定位 被引量:10
15
作者 姜涛 刘博涵 +1 位作者 李雪 李国庆 《电工技术学报》 EI CSCD 北大核心 2023年第13期3527-3538,共12页
近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振... 近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振荡源定位精度。为此,该文提出一种基于自适应投影多元经验模态分解(APIT-MEMD)的强迫振荡源定位方法。该方法首先采用APIT-MEMD通过构建自适应投影方向向量,实现对发电机多通道广域量测信息的同步分解,分离出表征不同振荡模式的固有模态函数(IMF)分量;然后,借助对数能量熵从众多IMF分量中提取出含强迫振荡模式的IMF分量;在此基础上,根据提取出的强迫振荡IMF分量,计算各发电机的耗散能量流,根据耗散能量流实现强迫振荡源定位;最后,通过WECC 179节点测试系统仿真数据和实际电网同步相量测量装置(PMU)实测数据对所提方法进行分析、验证,结果验证了所提方法的准确性和实用性。 展开更多
关键词 电力系统 强迫振荡 振荡源定位 自适应投影多元经验模态分解 固有模态函数 耗散能量流
在线阅读 下载PDF
经验模态分解在单相自适应重合闸中的应用 被引量:11
16
作者 兰华 艾涛 李扬 《电力系统保护与控制》 EI CSCD 北大核心 2010年第12期35-39,共5页
为了识别输电线路单相接地瞬时性和永久性故障,利用经验模态分解将电压暂态信号分解为若干个固有模态函数,选取代表信号较高频部分的前四层固有模态函数进行归一化,作为最小二乘支持向量机的输入特征量。大量EMTP仿真和Matlab计算表明... 为了识别输电线路单相接地瞬时性和永久性故障,利用经验模态分解将电压暂态信号分解为若干个固有模态函数,选取代表信号较高频部分的前四层固有模态函数进行归一化,作为最小二乘支持向量机的输入特征量。大量EMTP仿真和Matlab计算表明该方法能很好地区分瞬时性故障和永久性故障,表明该方法具有更好的识别准确率。与BP神经网络进行了比较,证明了经验模态分解和最小二乘支持向量机应用于单相自适应重合闸中具有更快的识别速度。 展开更多
关键词 经验模态分解 最小二乘支持向量机 单相自适应重合闸 瞬时性故障 永久性故障
在线阅读 下载PDF
基于经验模态分解的自适应滤波算法在局部放电窄带干扰抑制中的应用 被引量:9
17
作者 钱勇 黄成军 戚伟 《继电器》 CSCD 北大核心 2006年第22期27-31,共5页
自适应滤波算法是当前抑制窄带干扰的有效方法。对于单频率的窄带干扰,设置自适应滤波器的参数比较容易,但是对于局放监测中多个频率且频率范围很宽的窄带干扰,设置自适应滤波的参数就会变得很困难。根据经验模态分解EMD(Emp iricalMode... 自适应滤波算法是当前抑制窄带干扰的有效方法。对于单频率的窄带干扰,设置自适应滤波器的参数比较容易,但是对于局放监测中多个频率且频率范围很宽的窄带干扰,设置自适应滤波的参数就会变得很困难。根据经验模态分解EMD(Emp iricalMode Decomposition)的分频特性,将EMD引入自适应滤波算法,提出了一种基于EMD的自适应滤波算法。局放信号中多个频率的窄带干扰经EMD分解之后,会分解到不同的模态函数中,从而将多频率的窄带干扰转化成了多个单频率的窄带干扰,在此基础之上对固有模态函数进行自适应滤波,可以较容易地解决自适应滤波器参数设置的问题,并能获得比普通自适应滤波更好的效果。仿真及实际数据的处理验证了该算法的有效性。 展开更多
关键词 经验模态分解 固有模态函数 自适应滤波 局部放电 窄带干扰
在线阅读 下载PDF
基于有效数据的经验模态分解快速算法研究 被引量:7
18
作者 胡劲松 杨世锡 《振动.测试与诊断》 EI CSCD 2006年第2期119-121,共3页
在介绍了经验模态分解(简称EMD)方法的理论和算法基础上,为了提高EMD算法的速度,提出了基于有效数据的EMD快速算法,即通过EMD分解中止的计算区域限定于有效数据段来实现算法的提速。通过对非线性信号的实验研究表明,基于有效数据的EMD... 在介绍了经验模态分解(简称EMD)方法的理论和算法基础上,为了提高EMD算法的速度,提出了基于有效数据的EMD快速算法,即通过EMD分解中止的计算区域限定于有效数据段来实现算法的提速。通过对非线性信号的实验研究表明,基于有效数据的EMD快速算法不但能显著提高算法的速度,而且还可以提高算法的精度。该研究成果能广泛地用于信号时频分析领域。 展开更多
关键词 有效数据 经验模态分解 快速算法 时频分析
在线阅读 下载PDF
在线信号的快速经验模态分解方法 被引量:2
19
作者 李丹阳 蔡金燕 +1 位作者 何强 朱赛 《仪表技术与传感器》 CSCD 北大核心 2013年第6期108-110,114,共4页
传统经验模态分解(EMD)中存在端点效应和分解速度慢的问题,无法适用于在线信号的实时分析。针对这一问题,提出了一种在线信号的快速EMD分解方法,利用在线信号"无限长"特点,首先提取在线信号有效数据,然后采用LSSVR拟合信号上... 传统经验模态分解(EMD)中存在端点效应和分解速度慢的问题,无法适用于在线信号的实时分析。针对这一问题,提出了一种在线信号的快速EMD分解方法,利用在线信号"无限长"特点,首先提取在线信号有效数据,然后采用LSSVR拟合信号上、下包络线,不仅有效抑制了EMD分解的端点效应,而且大大提高了EMD分解的质量和速度。仿真结果表明:该方法快速有效,基本可以满足在线信号的实时快速分解,具有一定的工程应用价值。 展开更多
关键词 在线信号 经验模态分解 端点效应 快速分解
在线阅读 下载PDF
改进的自适应噪声总体集合经验模态分解在光谱信号去噪中的应用 被引量:19
20
作者 李晓莉 李成伟 《光学精密工程》 EI CAS CSCD 北大核心 2016年第7期1754-1762,共9页
针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先... 针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先,将自适应噪声的总体集合经验模态分解方法引入近红外光谱去噪过程,介绍了经验模态分解、集合经验模态分解、互补集合经验模态分解及自适应噪声总体集合经验模态分解的基本原理及具体实现过程。然后,应用基于曲率和离散弗雷歇距离的自适应噪声总体集合经验模态分解改进算法对仿真信号和光谱信号进行去噪,并将其标准差和信噪比作为评价指标。实验结果表明:应用提出的方法得到的血糖浓度近红外光谱数据其标准差为0.179 4,信噪比为19.117 5dB,实现了信号与噪声的分离,改善了重构信号质量,具有良好的自适应性,可以有效识别并提取有用信息。 展开更多
关键词 无创血糖检测 近红外光谱 信号去噪 自适应噪声总体集合经验模态分解 曲率 离散弗雷歇距离
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部