期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
快速自适应经验模态分解方法的基本原理及其性能评估 被引量:7
1
作者 周义 李鸿光 《振动与冲击》 EI CSCD 北大核心 2016年第3期14-19,共6页
经验模态分解是一种有效的信号分解方法,尤其是针对非平稳非线性信号。然而,随着研究的深入,学者们发现该方法中存在着诸多弊端。根据Bhuiyan的研究,提出了一种针对一维信号的快速自适应经验模态分解方法。通过大量的数值仿真,证明这种... 经验模态分解是一种有效的信号分解方法,尤其是针对非平稳非线性信号。然而,随着研究的深入,学者们发现该方法中存在着诸多弊端。根据Bhuiyan的研究,提出了一种针对一维信号的快速自适应经验模态分解方法。通过大量的数值仿真,证明这种方法不但能克服传统方法的弊端、得到高质量的分解结果,还能大幅度地提高计算效率。 展开更多
关键词 经验模态分解 快速自适应经验模态分解 数值仿真
在线阅读 下载PDF
基于快速自适应经验模态分解的高速经编机振动分析 被引量:1
2
作者 陈志昊 包文杰 +3 位作者 李富才 静波 黄朝林 孙建文 《纺织学报》 EI CAS CSCD 北大核心 2023年第4期204-211,共8页
针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模... 针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模态函数(IMF),然后计算各IMF分量与原信号的相关性,结合经编机运动特点,判断其中相关性最大的本征模态函数为机构运动分量并去除,最后将剩余分量重组实现结构振动信号的提取。将该方法应用于经编机振动故障诊断中,对动态振动数据进行处理,结合静态固有频率测试,成功提取出与实际故障现象相同的信号频率特征,判断出经编机在高转速下振动过大的原因,为后续经编机振动优化提供了参考。 展开更多
关键词 高速经编机 振动分析 自适应经验模态分解 相关性分析 故障诊断
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
3
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法
4
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
在线阅读 下载PDF
快速自适应二维经验模态分解在SAR目标识别中的应用研究 被引量:5
5
作者 胡媛媛 韩彦龙 《电光与控制》 CSCD 北大核心 2021年第8期40-43,87,共5页
针对合成孔径雷达(SAR)图像目标识别问题,提出基于快速自适应二维经验模态分解(FABEMD)的方法。FABEMD可实现对SAR图像的快速分解,获得描述目标低频至高频信息的多层次固态模函数(BIMF)。基于结构相似性指标剔除多层次BIMF中的噪声成分... 针对合成孔径雷达(SAR)图像目标识别问题,提出基于快速自适应二维经验模态分解(FABEMD)的方法。FABEMD可实现对SAR图像的快速分解,获得描述目标低频至高频信息的多层次固态模函数(BIMF)。基于结构相似性指标剔除多层次BIMF中的噪声成分,保留高鉴别力部分。分类阶段采用联合稀疏表示对保留的BIMF进行表征分类。基于MSTAR数据集对所提方法进行测试,结果验证了其性能优势。 展开更多
关键词 合成孔径雷达 目标识别 快速自适应二维经验模态分解 结构相似性 联合稀疏表示
在线阅读 下载PDF
基于经验模态分解自适应滤波的胎儿心电信号提取 被引量:5
6
作者 石岩岩 苟正品 +2 位作者 张榆锋 张燕 陈秋英 《生物医学工程与临床》 CAS 2010年第1期5-9,共5页
目的提出了一种基于经验模态分解自适应滤波的胎儿心电信号提取法。方法首先利用经验模态分解算法对孕妇腹部信号进行分解得到一组内模函数(IMF),然后将这组IMF作为自适应滤波器的主输入信号,并将孕妇胸部信号作为参考输入信号。通过学... 目的提出了一种基于经验模态分解自适应滤波的胎儿心电信号提取法。方法首先利用经验模态分解算法对孕妇腹部信号进行分解得到一组内模函数(IMF),然后将这组IMF作为自适应滤波器的主输入信号,并将孕妇胸部信号作为参考输入信号。通过学习算法自适应组合IMF,滤除母体心电信号成分,从而提取胎儿心电信号。结果与结论基于仿真和临床的实验结果表明,该方法提取的胎儿心电信号误差小,性能优于传统的最小均方和归一化最小均方自适应滤波算法。 展开更多
关键词 经验模态分解 自适应算法 母体心电图 胎儿心电图
在线阅读 下载PDF
基于自适应噪声完整聚合经验模态分解-极限学习机的短期血糖预测 被引量:6
7
作者 王延年 郭占丽 +1 位作者 袁进磊 李全忠 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第6期702-710,共9页
糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进... 糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进行分解,得到不同频段的血糖分量IMF(本征模态函数)和残余分量,以降低血糖时间序列的非平稳性;然后对各血糖分量IMF和残余分量分别构建极限学习机,并将各极限学习机的预测结果融合,获得患者未来血糖浓度的预测值,提高预测精度;在此基础上,进行低血糖预警。利用从河南省人民医院内分泌科采集的56例患者的数据进行模型检验,结果表明:与ELM模型和EMD-ELM模型相比,CEEMDAN-ELM短期血糖预测模型提前45 min的预测仍可达到较高预测水平(RMSE=0.205 1,MAPE=2.116 4%);低血糖预警虚警率和漏警率分别为0.97%和7.55%。血糖预测时间的延长,可以为医生和患者提供充足时间进行血糖浓度控制,提高糖尿病治疗的效果。 展开更多
关键词 血糖预测 低血糖预警 自适应噪声完整聚合经验模态分解 极限学习机
在线阅读 下载PDF
基于经验模态分解的井架变形信号自适应降噪研究 被引量:2
8
作者 田丰 汪云甲 +1 位作者 王昆 王猛 《煤炭工程》 北大核心 2012年第4期109-111,共3页
在进行建筑物高精度动态监测时,真实位移信号往往淹没在强噪声之中,利用经验模态分解对监测信号进行多尺度分解,根据尺度标准化模量累积均值指标,确定噪声分离层次,对有效尺度分量重构得到降噪后的变形信号,建立了变形监测信号的自适应... 在进行建筑物高精度动态监测时,真实位移信号往往淹没在强噪声之中,利用经验模态分解对监测信号进行多尺度分解,根据尺度标准化模量累积均值指标,确定噪声分离层次,对有效尺度分量重构得到降噪后的变形信号,建立了变形监测信号的自适应降噪模型。工程实例表明该方法具有优越性。 展开更多
关键词 井架 经验模态分解 变形监测 自适应降噪
在线阅读 下载PDF
基于经验模态分解的子带自适应声学回声消除算法
9
作者 李娜 陆晓明 陈盛云 《三峡大学学报(自然科学版)》 CAS 2010年第3期85-89,共5页
在语音通信中,声学回声消除技术用于消除扬声器与麦克风之间耦合产生的回声干扰.在声学回声抵消系统的实现过程中,可以通过子带技术来提高系统的性能,并减小算法本身的运算量.常见的子带算法多是基于组合滤波器、小波变换实现的.本文基... 在语音通信中,声学回声消除技术用于消除扬声器与麦克风之间耦合产生的回声干扰.在声学回声抵消系统的实现过程中,可以通过子带技术来提高系统的性能,并减小算法本身的运算量.常见的子带算法多是基于组合滤波器、小波变换实现的.本文基于经验模态分解提出一种新的自适应回声消除算法EMD-APNLMS,它克服了基于组合滤波器算法收敛慢的缺点以及基于小波变换算法需要选择小波基的问题.计算机仿真结果表明,该算法实现了回声的消除,收敛速率较快,非常适用回声这种非平稳信号的处理. 展开更多
关键词 回声消除 自适应算法 经验模态分解
在线阅读 下载PDF
采用集合经验模态分解和改进阈值函数的心电自适应去噪方法 被引量:24
10
作者 尹丽 陈富民 +1 位作者 张琦 陈鑫 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第1期101-107,共7页
针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采... 针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采用过零率自适应判断各IMF的噪声类别:若IMF包含高频噪声,采用结合软硬阈值优缺点所提出的改进阈值函数以去除IMF分量中的高频噪声;若IMF包含低频的基线漂移,则采用中值滤波器抑制基线漂移。最后将处理后的IMF分量叠加,即可重构去噪后的心电信号。实验结果表明,与已有的小波阈值法去噪后的信噪比(SNR)和均方根误差(RSME)对比,所提方法对心电信号去噪效果更加显著,而且能完整地保留波形特征。 展开更多
关键词 心电自适应去噪 集合经验模态分解 过零率 改进阈值函数
在线阅读 下载PDF
基于经验模态分解的有限阵元宽带自适应阵列DBF方法
11
作者 周顺 杨明 +1 位作者 刘云志 钱璟 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第4期491-495,共5页
针对有限阵元条件下宽带自适应阵列自由度不够和抗干扰性能下降的问题,提出一种基于经验模态分解(Empirical mode decomposition,EMD)的宽带自适应阵列数字波束形成(Digital beamforming,DBF)方法。该方法首先对阵元接收的快拍数据进行... 针对有限阵元条件下宽带自适应阵列自由度不够和抗干扰性能下降的问题,提出一种基于经验模态分解(Empirical mode decomposition,EMD)的宽带自适应阵列数字波束形成(Digital beamforming,DBF)方法。该方法首先对阵元接收的快拍数据进行EMD处理,然后对各个模态函数矩阵应用线性约束最小方差(Linearlyconstrained minimum variance,LCMV)波束形成算法求解自适应权矢量,最后对信号进行重构。与传统的基于快速傅里叶变换(Fast Fourier transform,FFT)子带自适应阵列方法相比,该方法具有以下优势:适用于阵元数目受限的宽带自适应阵列,无需事先指定模态函数划分的频段,可以提高阵列处理的自由度。仿真验证了所提方法的有效性。 展开更多
关键词 经验模态分解 宽带自适应阵列 经验模态自适应阵列 子带
在线阅读 下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:16
12
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 脑电图 眼电伪迹 独立成分分析 自适应噪声完备经验模态分解 小波
在线阅读 下载PDF
基于经验模态分解的自适应模极大值去噪方法 被引量:3
13
作者 镇凡迪 李倩 方烜 《通信电源技术》 2016年第5期80-82,86,共4页
经验模态分解法是一种自适应性更好的信号处理方法,并且其对非线性信号的处理更加有优势。但是实际信号往往是含有噪声的,利用自适应模极大值方法对其去噪后,能够提高经验模态分解方法对其处理的效率。
关键词 经验模态分解 小波预处理 自适应模极大值
在线阅读 下载PDF
基于互补自适应噪声的集合经验模式分解算法 被引量:17
14
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
在线阅读 下载PDF
基于经验模态分解的激光陀螺随机信号消噪 被引量:10
15
作者 曲从善 于鸿 +1 位作者 许化龙 谭营 《红外与激光工程》 EI CSCD 北大核心 2009年第5期859-863,共5页
各种随机噪声是导致激光陀螺产生误差的主要因素,且其性质特殊,很难用传统的滤波方法去除。为了抑制激光陀螺的随机漂移,提高使用精度,提出了一种新型经验模态分解方法对陀螺随机漂移测试信号进行滤波处理。该方法将经验模态分解的内模... 各种随机噪声是导致激光陀螺产生误差的主要因素,且其性质特殊,很难用传统的滤波方法去除。为了抑制激光陀螺的随机漂移,提高使用精度,提出了一种新型经验模态分解方法对陀螺随机漂移测试信号进行滤波处理。该方法将经验模态分解的内模函数中两个相邻过零点之间的信号定义为模态单元,并作为基本分析对象,通过对模态单元振幅的阈值处理来判断模态单元的类型,进而建立模态单元滤波模型。分析了经验模态分解法在分解不同Hurst指数分形高斯噪声时模态振幅的演化规律,并建立了一种用于高斯消噪的阈值选取规则。运用该方法对激光陀螺测试数据进行了滤波降噪实验,并用Allan方差法对不同降噪算法的降噪效果进行了比较分析,实验结果验证了该方法的有效性和优越性。 展开更多
关键词 激光陀螺 经验模态分解 信号降噪 自适应滤波
在线阅读 下载PDF
采用改进互补集总经验模态分解的电能质量扰动检测方法 被引量:7
16
作者 吴新忠 邢强 +2 位作者 陈明 成江洋 杨春雨 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第9期1834-1843,共10页
针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采... 针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采用高频辅助分解的优势,并以极值点分布特性作为评价指标自适应选择最优加噪频率.通过对EEMD加噪准则的研究,推导出加噪幅值和分解次数采取固定值:0.01SD和2次,且以正负成对的形式加入到原始信号中.通过仿真实验和搭建的电能质量扰动平台的实测数据验证了所提方法的自适应性和计算性能,而且适用于电能质量扰动检测与分析. 展开更多
关键词 集总经验模态分解(EEMD) 自适应快速互补EEMD(AFCEEMD) 极值点分布 加噪频率参数优化 电能质量扰动
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
17
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应噪声集合经验模态分解 恒星日滤波
在线阅读 下载PDF
基于经验模态分解和最小二乘支持向量机的溶氧预测 被引量:4
18
作者 宦娟 曹伟建 +1 位作者 秦益霖 顾玉宛 《渔业现代化》 北大核心 2017年第4期37-43,共7页
养殖池塘中溶氧(DO)与鱼、蟹等水产品的生长有着十分密切的关系。为了提高DO的预测精度和有效性,提出了一种基于经验模态分解(EMD)和自适应扰动粒子群优化最小二乘支持向量机(LSSVM)的组合预测模型。首先将DO时间序列通过EMD分解成若干... 养殖池塘中溶氧(DO)与鱼、蟹等水产品的生长有着十分密切的关系。为了提高DO的预测精度和有效性,提出了一种基于经验模态分解(EMD)和自适应扰动粒子群优化最小二乘支持向量机(LSSVM)的组合预测模型。首先将DO时间序列通过EMD分解成若干分量,接着对各个分量进行相空间重构,在相空间中用LSSVM对各分量进行建模预测,并使用自适应扰动粒子群算法对LSSVM的超参数进行优化,采用单点迭代法进行多步预测。结果显示:该模型与单一LSSVM预测模型相比,具有良好的预测效果。预测未来4 h DO值时,各项性能指标误差均方根(RMSE)、平均相对误差均值(MAPE)和平均绝对误差(MAE)三项指标分别降低了13.4%、11.3%和1.8%;预测未来24 h DO值时,三项指标分别降低了12.9%、12.1%和2.7%。研究表明:该组合模型可有效提取DO序列特性,具有较高的预测精度和泛化性能。 展开更多
关键词 溶氧预测 经验模态分解 最小二乘支持向量机 自适应粒子群算法 单次迭代法
在线阅读 下载PDF
经验模态分解和稀疏表示的SAR图像去噪方法 被引量:4
19
作者 刘柏森 张晔 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第9期1297-1301,共5页
相干斑噪声严重影响了SAR图像的应用,为降低这个影响,本文提出了一种经验模态分解和稀疏表示相结合的去噪方法。该方法利用经验模态分解是由数据驱动这一特点,把含噪SAR图像自适应的分解为若干固有模态分量,根据这些固有模态分量的时频... 相干斑噪声严重影响了SAR图像的应用,为降低这个影响,本文提出了一种经验模态分解和稀疏表示相结合的去噪方法。该方法利用经验模态分解是由数据驱动这一特点,把含噪SAR图像自适应的分解为若干固有模态分量,根据这些固有模态分量的时频特性,判断噪声在固有模态分量的分布情况。由于噪声的分布相对于图像目标分布具有孤立性、随机性的特点,采用稀疏表示方法对含噪的固有模态分量进行分解,通过估计固有模态分量的噪声强度,重构各固有模态分量,将处理后的以及未处理的各固有模态分量进行经验模态分解的重构,以此达到去噪的目的。为验证该算法的有效性,进行了对比实验,通过客观评价标准证明了该方法在细节信息保持等方面优于其他方法,是一种针对SAR图像的有效去噪方法。 展开更多
关键词 SAR图像去噪 经验模态分解 稀疏表示 自适应 合成孔径雷达 固有模态分量 相干斑噪声
在线阅读 下载PDF
基于小波和经验模态分解的气体泄漏声音端点检测算法 被引量:4
20
作者 孙静 聂士明 史宝军 《河北工业大学学报》 CAS 2022年第6期10-18,共9页
针对石油化工等复杂高危场所,危化品泄漏产生的非平稳泄漏声音信号,难以正确判断声音端点的问题,基于小波和经验模态分解(EMD,Empirical Mode Decomposition),提出一种改进的能零比气体泄漏声音端点检测算法。首先,通过麦克风阵列采集... 针对石油化工等复杂高危场所,危化品泄漏产生的非平稳泄漏声音信号,难以正确判断声音端点的问题,基于小波和经验模态分解(EMD,Empirical Mode Decomposition),提出一种改进的能零比气体泄漏声音端点检测算法。首先,通过麦克风阵列采集气体泄漏信号,将预处理后的泄漏信号通过小波阈值去噪,以提高检测信号的信噪比;其次,利用EMD算法对降噪的信号进行分解,从分解得到的本征模态分量(IMF,Intrinsic Mode Function)中选择IMF,构造新的信号;然后,通过分帧和加窗的方法对重构信号进行再处理,计算出各帧信号的能零比值,采用提出的自适应门限计算方法对信号进行端点检测;最后,搭建简易的气体泄漏模拟实验平台,对改进的气体泄漏声音端点检测算法,进行了实验测试。实验结果表明:改进的能零比气体泄漏声音端点检测算法,在低信噪比的条件下,仍然具有良好的检测精度和检测效率;与传统方法和基于EMD的能零比算法相比更接近实验采集声音信号真正的声音端点。 展开更多
关键词 端点检测 能零比 小波阈值去噪 经验模态分解 自适应门限
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部