红外和可见光图像因其互补性而广泛应用于多个领域。但是,由于红外目标提取的不足,导致直接合成融合图像会存在失真以及信息丢失等问题。本文提出了一种基于快速滚动引导滤波(fast rolling guidance filter, FRGF)和改进的遗传算法的红...红外和可见光图像因其互补性而广泛应用于多个领域。但是,由于红外目标提取的不足,导致直接合成融合图像会存在失真以及信息丢失等问题。本文提出了一种基于快速滚动引导滤波(fast rolling guidance filter, FRGF)和改进的遗传算法的红外与可见光图像融合算法。首先,将对输入的红外图像和可见光图像进行FRGF多尺度分解,得到基底层和细节层图像。然后,基于改进的遗传算法和Renyi熵计算出最优阈值,将红外图像中的目标区域进行提取。最后,基底层使用比较匹配最大熵融合机制进行融合的方法;采用修正的拉普拉斯能量融合细节层。该算法融合了多尺度分解和自适应阈值分割的优点。实验结果表明,本文算法在主客观评价指标方面均优于多种经典融合算法,能够生成良好的融合结果。展开更多
文摘红外和可见光图像因其互补性而广泛应用于多个领域。但是,由于红外目标提取的不足,导致直接合成融合图像会存在失真以及信息丢失等问题。本文提出了一种基于快速滚动引导滤波(fast rolling guidance filter, FRGF)和改进的遗传算法的红外与可见光图像融合算法。首先,将对输入的红外图像和可见光图像进行FRGF多尺度分解,得到基底层和细节层图像。然后,基于改进的遗传算法和Renyi熵计算出最优阈值,将红外图像中的目标区域进行提取。最后,基底层使用比较匹配最大熵融合机制进行融合的方法;采用修正的拉普拉斯能量融合细节层。该算法融合了多尺度分解和自适应阈值分割的优点。实验结果表明,本文算法在主客观评价指标方面均优于多种经典融合算法,能够生成良好的融合结果。