期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种针对快速梯度下降对抗攻击的防御方法 被引量:4
1
作者 王晓鹏 罗威 +2 位作者 秦克 杨锦涛 王敏 《计算机工程》 CAS CSCD 北大核心 2021年第11期121-128,共8页
智能舰船识别可有效提高舰船装备智能化水平,但存在安全识别问题,即使性能卓越的分类模型也会受到对抗样本的攻击。面对快速梯度下降法(FGSM)这类对抗攻击,传统的防御方法需要先推倒已经训练好的分类模型,再通过安全手段进行重新训练。... 智能舰船识别可有效提高舰船装备智能化水平,但存在安全识别问题,即使性能卓越的分类模型也会受到对抗样本的攻击。面对快速梯度下降法(FGSM)这类对抗攻击,传统的防御方法需要先推倒已经训练好的分类模型,再通过安全手段进行重新训练。为简化这一过程,提出防御FGSM对抗攻击的FGSM-Defense算法。获得分类器对对抗样本初次预测的类别排名后,按相应置信度大小排名取出指定数量的类别。在此基础上,通过暴力搜索将这些类别依次指定为攻击目标,分别对原对抗样本进行FGSM有目标攻击,并按相应规则分步缩小搜索范围,筛选出对抗样本真实的类别。实验结果表明,该算法能够准确区分对抗样本的真实类别,在ImageNet数据集上的防御成功率为53.1%。与传统防御方法相比,其无需改变原有神经网络结构和重新训练分类模型,可减少对硬件算力的依赖,降低防御成本。 展开更多
关键词 舰船识别 对抗样本 对抗攻击 快速梯度下降法 ImageNet数据集
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部