期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于BP网络的权值更新快速收敛算法 被引量:6
1
作者 周昌能 余雪丽 《计算机应用》 CSCD 北大核心 2006年第8期1940-1942,共3页
针对标准BP网络学习算法收敛慢的问题,提出了两种权值更新的快速收敛算法,即基于梯度变化率的快速传递算法和基于梯度方向的弹性传递算法,并在煤矿事故救援游戏式训练系统中进行仿真和比较,让游戏角色根据井下空气成分学习判断危险程度... 针对标准BP网络学习算法收敛慢的问题,提出了两种权值更新的快速收敛算法,即基于梯度变化率的快速传递算法和基于梯度方向的弹性传递算法,并在煤矿事故救援游戏式训练系统中进行仿真和比较,让游戏角色根据井下空气成分学习判断危险程度,以便受训人员或仿生机器人采取相应的措施。仿真结果表明,所提算法的收敛时间比标准算法有一定改善。 展开更多
关键词 快速收敛算法 游戏式训练 BP人工神经网络
在线阅读 下载PDF
基于边缘方向信息的主动轮廓算法 被引量:3
2
作者 戚飞虎 沈定刚 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1997年第1期45-50,共6页
提出一种基于边缘方向信息的改进型主动轮廓算法MACA(MorifiedActiveContourAlgorithm).在Snake模型的基础上加入2项基于匹配要求的新的能量函数,用FGA(FastGreadyAlgo... 提出一种基于边缘方向信息的改进型主动轮廓算法MACA(MorifiedActiveContourAlgorithm).在Snake模型的基础上加入2项基于匹配要求的新的能量函数,用FGA(FastGreadyAlgorithm)迭代能量函数使其快速收敛.对轮廓曲线的一阶和二阶导数、搜索区域、轮廓的重抽样作锁定. 展开更多
关键词 主动轮廓 快速收敛算法 光学信息
在线阅读 下载PDF
基于改进纵横交叉算法的电网最优潮流计算 被引量:6
3
作者 曾琮 黄强 +2 位作者 陈德 郑晓莹 孟安波 《中国电力》 CSCD 北大核心 2021年第9期9-16,共8页
纵横交叉算法(crisscross optimization algorithm,CSO)已应用于解决电网中的多种复杂问题并取得了较好的效果。在CSO算法基础上,提出了一种快速收敛的改进纵横交叉算法(faster crisscross optimization algorithm,FCSO)求解最优潮流问... 纵横交叉算法(crisscross optimization algorithm,CSO)已应用于解决电网中的多种复杂问题并取得了较好的效果。在CSO算法基础上,提出了一种快速收敛的改进纵横交叉算法(faster crisscross optimization algorithm,FCSO)求解最优潮流问题。该改进算法在原有的双交叉算子的基础上提出了一个全新的算子——中心交叉算子,此算子与横向交叉算子以一定的规律交替进行,种群中每个个体依次与当前最优个体执行交叉操作后再执行竞争算子,有选择地向当前全局最优个体靠拢,以提高单次搜索的质量,加速收敛。在IEEE118节点系统上的仿真结果表明,CSO较同类的群智能优化算法有着收敛精度高、稳定性强的特点,而FCSO能在不损失收敛精度的条件下显著加快收敛速度,大幅缩短寻优时间,为纵横交叉算法应用于实际电网实时调控领域提供了更多的可能。 展开更多
关键词 群智能优化算法 运行优化 快速收敛纵横交叉算法 最优潮流计算 中心交叉算子
在线阅读 下载PDF
Fast method for spreading sequence estimation of DSSS signal based on maximum likelihood function 被引量:12
4
作者 Yanhua Peng Bin Tang Ming Lv 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期948-953,共6页
To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. ... To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR). 展开更多
关键词 direct sequence spread spectrum (DSSS) signal spreading sequence maximum likelihood estimation (MLE).
在线阅读 下载PDF
Global optimization by small-world optimization algorithm based on social relationship network 被引量:1
5
作者 李晋航 邵新宇 +2 位作者 龙渊铭 朱海平 B.R.Schlessman 《Journal of Central South University》 SCIE EI CAS 2012年第8期2247-2265,共19页
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol... A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems. 展开更多
关键词 global optimization intelligent algorithm small-world optimization decentralized search
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部