期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于快速搜索与发现密度峰值聚类算法的含有分布式光伏的配电网电压分区协调控制 被引量:21
1
作者 张赟宁 石泽 《现代电力》 北大核心 2020年第1期35-41,共7页
随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为... 随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为基础计算节点电气距离,根据电气距离构建节点相似度矩阵,并采用快速搜索与发现密度峰值聚类算法对配电网进行快速分区;然后考虑本地光伏独立调压能力的不足,提出了一种先无功后有功的电压分区协调控制策略;最后通过IEEE33配电网算例的仿真结果验证了该分区方法的快速性和电压分区协调控制策略的有效性。 展开更多
关键词 电压集中控制 综合电压灵敏度 电气距离 快速搜索与发现密度峰值聚类 电压分区协调控制
在线阅读 下载PDF
结合双树复小波变换和改进密度峰值快速搜索聚类的乳腺MR图像分割 被引量:13
2
作者 范虹 张程程 +2 位作者 侯存存 朱艳春 姚若侠 《电子学报》 EI CAS CSCD 北大核心 2019年第10期2149-2157,共9页
针对乳腺MR图像组织复杂、灰度不均匀、难分割的特点,本文提出双树复小波(DTCWT)变换结合密度聚类的图像分割方法.首先利用复小波域双变量模型结合各向异性扩散函数对图像进行去噪处理;进而通过简单线性迭代聚类(SLIC)算法将图像划分成... 针对乳腺MR图像组织复杂、灰度不均匀、难分割的特点,本文提出双树复小波(DTCWT)变换结合密度聚类的图像分割方法.首先利用复小波域双变量模型结合各向异性扩散函数对图像进行去噪处理;进而通过简单线性迭代聚类(SLIC)算法将图像划分成一定数量的超像素区域,根据事先设置的阈值搜索每个超像素的近邻,从而降低基于K近邻的密度峰值快速搜索聚类(KNN-DPC)算法寻找每个样本近邻的时间;最终,引入超像素区域的近邻信息度量样本密度,采用KNN-DPC算法的分配策略自适应聚类.仿真和临床数据分割结果表明,所提算法能有效的实现乳腺MR图像的分割. 展开更多
关键词 乳腺MR图像分割 双树复小波变换 双变量模型 超像素分 密度峰值快速搜索
在线阅读 下载PDF
基于密度峰值快速搜索聚类的多场景分布式电源规划 被引量:6
3
作者 武晓朦 时政 +3 位作者 付子义 刘欣雨 党建 李飞 《河南理工大学学报(自然科学版)》 CAS 北大核心 2022年第2期117-123,共7页
针对间歇性分布式电源出力的随机性、负荷需求的不确定性以及分布式电源与负荷之间存在相关性的问题,采用拉丁超立方抽样并结合Spearman秩相关系数的Cholesky分解,得到分布式电源具有相关性的出力与负荷需求样本。通过密度峰值快速搜索... 针对间歇性分布式电源出力的随机性、负荷需求的不确定性以及分布式电源与负荷之间存在相关性的问题,采用拉丁超立方抽样并结合Spearman秩相关系数的Cholesky分解,得到分布式电源具有相关性的出力与负荷需求样本。通过密度峰值快速搜索聚类算法对相关性样本进行有效削减得到典型场景,以分布式电源投资运行费用和配电网向上级电网购电费用最小为优化目标,建立分布式电源多目标规划模型。最后通过二阶锥松弛将规划模型转化为混合整数二阶锥规划问题,并调用Cplex求解器对规划模型求解。IEEE 33节点算例结果验证了所提模型的合理性。 展开更多
关键词 分布式电源规划 Spearman秩相关系数 密度峰值快速搜索 二阶锥规划
在线阅读 下载PDF
快速搜索密度峰值聚类在图像检索中的应用 被引量:5
4
作者 王华秋 聂珍 《计算机工程与设计》 北大核心 2016年第11期3045-3050,3057,共7页
为缩减图像检索和匹配范围,提高检索速度和准确率,将快速搜索密度峰值聚类用于对图像,按照特征相似性原则进行聚类,在类中心和最接近的一类中进行图像检索。考虑到传统的图像特征提取算法忽略了图像颜色的空间分布信息,提取的特征信息... 为缩减图像检索和匹配范围,提高检索速度和准确率,将快速搜索密度峰值聚类用于对图像,按照特征相似性原则进行聚类,在类中心和最接近的一类中进行图像检索。考虑到传统的图像特征提取算法忽略了图像颜色的空间分布信息,提取的特征信息无法突出感兴趣的图像区域,通过等面积矩形环对图像进行划分并计算各空间区域的相关性,根据空间区域相关性计算各区域的重要性,将空间信息与颜色信息进行融合;对聚类算法的截断距离进行合理改进,保证了聚类的精度;将该密度峰值聚类算法应用于图像检索之中。对比实验结果表明,所提聚类算法和空间特征提取方法提高了图像检索的效率和准确性。 展开更多
关键词 快速搜索 密度峰值 截断距离 空间相关性 图像检索
在线阅读 下载PDF
贝壳形屋盖风压系数密度峰值聚类分区研究
5
作者 林拥军 周畅 +2 位作者 张曾鹏 余国菲 谢远昂 《建筑科学与工程学报》 北大核心 2024年第1期158-170,共13页
鉴于贝壳形屋盖表面风压分布的特殊性,提出基于快速搜索技术的密度峰值聚类风压系数分区方法。以某贝壳形屋盖表面风压分布试验结果为基础,进行密度峰值聚类风压系数分区,采用SD有效性指标验证分区数的合理性,并与改进k-means聚类分区... 鉴于贝壳形屋盖表面风压分布的特殊性,提出基于快速搜索技术的密度峰值聚类风压系数分区方法。以某贝壳形屋盖表面风压分布试验结果为基础,进行密度峰值聚类风压系数分区,采用SD有效性指标验证分区数的合理性,并与改进k-means聚类分区结果进行对比。结果表明:密度峰值聚类风压系数分区以风压系数相对距离、局部密度和综合指数为特征参数,能较好反映屋面风压分布特性,有效保证类聚合性和类类分离性;相较于改进k-means分区法,不同风向角下密度峰值聚类得到的分区数与SD最优聚类数接近;密度峰值聚类分区结果能更准确反映贝壳形屋盖表面风压分布特性,充分体现测点风压系数局部密度和相对距离特征值较大的基本原则,对于贝壳形屋盖的风压系数分区具有更好的适用性;贝壳形屋盖密度峰值聚类分区最大负风压系数在-0.59~-1.74之间。 展开更多
关键词 密度峰值 快速搜索 风压系数分区 贝壳形屋盖
在线阅读 下载PDF
基于改进快速密度峰值算法的电力负荷曲线聚类分析 被引量:26
6
作者 陈俊艺 丁坚勇 +4 位作者 田世明 卜凡鹏 朱炳翔 黄事成 周凯 《电力系统保护与控制》 EI CSCD 北大核心 2018年第20期85-93,共9页
为解决传统聚类算法对大数据背景下高维海量、类簇形状差异巨大的电力负荷曲线进行聚类分析时存在的聚类结果不稳定、聚类效果较差、聚类速度慢和内存消耗过大等问题,提出一种改进的快速密度峰值聚类算法。首先应用主成分分析法对归一... 为解决传统聚类算法对大数据背景下高维海量、类簇形状差异巨大的电力负荷曲线进行聚类分析时存在的聚类结果不稳定、聚类效果较差、聚类速度慢和内存消耗过大等问题,提出一种改进的快速密度峰值聚类算法。首先应用主成分分析法对归一化后的负荷曲线集进行降维处理,以减少样本向量间欧式距离的计算量和加快后续操作。然后利用kd树算法对降维后的数据进行快速K近邻搜索生成KNN矩阵。最后以KNN矩阵代替原算法的距离矩阵作为输入数据。在基于KNN改进的样本局部密度和距离计算准则的基础上,运用快速密度峰值算法对负荷曲线进行聚类分析。通过实验和算例分析验证了所提改进算法的实用性和有效性。 展开更多
关键词 电力大数据 负荷曲线 快速密度峰值算法 主成分分析 KD树 KNN算法
在线阅读 下载PDF
“密度-距离”快速搜索聚类算法及其在共词聚类中的应用 被引量:11
7
作者 李秀霞 邵作运 《情报学报》 CSSCI 北大核心 2016年第4期380-388,共9页
"密度-距离"快速搜索聚类算法的核心思想是:聚为一类的核心节点的密度最大,核心节点与其他密度更大的节点之间的距离相对更大。为丰富文献计量学的方法体系,本文将该算法引入到共词聚类分析中。以"学科服务"为研究... "密度-距离"快速搜索聚类算法的核心思想是:聚为一类的核心节点的密度最大,核心节点与其他密度更大的节点之间的距离相对更大。为丰富文献计量学的方法体系,本文将该算法引入到共词聚类分析中。以"学科服务"为研究主题,利用Bicomb形成共词矩阵,在Matlab环境中将其转换为三元组相似距离表,最后利用"密度一距离"快速搜索聚类算法将学科服务研究主题自动确定为5个研究类团,并给出了对应的类中心、实现了聚类结果的可视化。与已有工具软件(如SPSS、Ucinet、Citespace)内嵌的聚类算法的聚类效果相比,本文方法最大的优势是不需要进行多次迭代,耗时少;自动确定聚类中心的类名、类团的数目等;而且聚类结果理想,可视化效果较好。 展开更多
关键词 密度-距离 快速搜索 分析 共词
在线阅读 下载PDF
基于密度峰值聚类的动态群组发现方法 被引量:8
8
作者 王海艳 肖亦康 《计算机研究与发展》 EI CSCD 北大核心 2018年第2期391-399,共9页
近年来,群组推荐由于其良好的实用价值得到了广泛关注.群组发现作为群组推荐的前提环节,其发现结果对推荐效果有着至关重要的影响,群组相似度越高,推荐的效果和稳定性越好.针对现有群组发现方法中存在忽略用户倾向具有时间迁移性和群组... 近年来,群组推荐由于其良好的实用价值得到了广泛关注.群组发现作为群组推荐的前提环节,其发现结果对推荐效果有着至关重要的影响,群组相似度越高,推荐的效果和稳定性越好.针对现有群组发现方法中存在忽略用户倾向具有时间迁移性和群组可重叠性展开研究,提出了一种基于密度峰值聚类的动态群组发现方法.该方法首先通过动态泊松分解得到量化的用户动态倾向,然后通过高阶奇异值分解预测不同的时间节点下用户对不同项目的倾向,并根据计算所得的用户倾向构建高相似度用户集合,最后利用改进的基于密度峰值的聚类算法对用户集合进行划分,实现群组发现.仿真实验对比结果表明:上述基于密度峰值聚类的群组发现方法具有更好的群组推荐效果. 展开更多
关键词 时间上下文 动态性 相似度 密度峰值 群组发现
在线阅读 下载PDF
基于谱分析的密度峰值快速聚类算法
9
作者 韩忠华 毕开元 +1 位作者 司雯 吕哲 《计算机应用》 CSCD 北大核心 2019年第2期409-413,共5页
针对密度峰值快速聚类(CFSFDP)算法对不同数据集聚类效果的差异,利用谱聚类对密度峰值快速聚类算法加以改进,提出了一种基于谱分析的密度峰值快速聚类算法CFSFDP-SA。首先,将高维非线性的数据集映射到低维子空间上实现降维处理,将聚类... 针对密度峰值快速聚类(CFSFDP)算法对不同数据集聚类效果的差异,利用谱聚类对密度峰值快速聚类算法加以改进,提出了一种基于谱分析的密度峰值快速聚类算法CFSFDP-SA。首先,将高维非线性的数据集映射到低维子空间上实现降维处理,将聚类问题转化为图的最优划分问题以增强算法对数据全局结构的适应性;然后,利用CFSFDP算法对处理后的数据集进行聚类。结合这两种聚类算法各自的优势,能进一步提升聚类算法的性能。在5个人工合成数据集(2个线性数据集和3个非线性数据集)与4个UCI数据库中真实数据集上的聚类结果显示,相比CFSFDP算法,CFSFDP-SA算法的聚类精度有一定提升,在高维数据集的聚类精度上最多提高了14%,对原始数据集的适应性更强。 展开更多
关键词 数据 适应性 降维 密度峰值快速 谱分析
在线阅读 下载PDF
半监督约束集成的快速密度峰值聚类算法 被引量:23
10
作者 刘如辉 黄炜平 +2 位作者 王凯 刘创 梁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第11期2191-2200,2242,共11页
为了解决2014年在Science上提出的快速密度峰值聚类(CFDP)算法存在的自动选择时误选和漏选中心点、簇的数量需要主观先验判断、算法使用受场景局限的缺陷,从半监督角度出发,结合集成学习思想提出半监督约束集成的快速密度峰值聚类(SiCE-... 为了解决2014年在Science上提出的快速密度峰值聚类(CFDP)算法存在的自动选择时误选和漏选中心点、簇的数量需要主观先验判断、算法使用受场景局限的缺陷,从半监督角度出发,结合集成学习思想提出半监督约束集成的快速密度峰值聚类(SiCE-CFDP)算法. SiCE-CFDP算法使用相对密度方式度量节点密度,从多角度分析决策图,自动选择候选中心点,并最终自动确定簇的数量.在只标注有限约束关系的前提下,算法能以集成学习指导约束信息的扩充,提升聚类性能.在方法验证中,通过3个人工数据集、4个公开数据集以及1个空调系统数据集进行仿真研究.结果表明,在相同的约束量前提下,针对大样本数据,SiCE-CFDP算法相比其他半监督聚类算法具有更高的聚类精度. 展开更多
关键词 半监督约束 集成学习 快速密度峰值 决策图
在线阅读 下载PDF
一种基于改进密度峰值聚类的社区发现算法 被引量:3
11
作者 黄炳森 陈羽中 郭昆 《小型微型计算机系统》 CSCD 北大核心 2019年第4期782-786,共5页
从复杂网络中发现可能存在的群体或社区结构是复杂网络分析的一个重要研究方向.基于密度峰值社区发现的目标是以图聚类的方式来对复杂网络进行社区划分.但是,直接应用密度峰值聚类于社区发现,还存在着如何衡量节点距离和簇中心无法自动... 从复杂网络中发现可能存在的群体或社区结构是复杂网络分析的一个重要研究方向.基于密度峰值社区发现的目标是以图聚类的方式来对复杂网络进行社区划分.但是,直接应用密度峰值聚类于社区发现,还存在着如何衡量节点距离和簇中心无法自动选取等问题.在密度峰值聚类算法的基础上,提出一种基于等效电阻距离和自动选取密度峰值簇中心的社区发现算法.首先,在衡量复杂网络中节点的距离上采用了等效电阻路径长度来作为距离度量.其次,在密度峰值算法的决策图上,通过DBSCAN算法自动选取簇中心,而不是通过观察决策图人工选择,以减少人为干扰.最后,在人工合成网络和真实网络上的实验表明,提出的算法具有较高的精度和鲁棒性. 展开更多
关键词 社区发现 密度峰值 自动选取簇中心 等效电阻距离
在线阅读 下载PDF
基于自动快速密度峰值聚类的粒子群动态优化算法 被引量:1
12
作者 李飞 乐强 +2 位作者 潘紫微 孙怡宁 余晓流 《计算机应用》 CSCD 北大核心 2023年第S01期154-162,共9页
针对常规多种群方法在求解动态优化问题时往往存在多样性缺失现象,提出一种基于自动快速密度峰值聚类的粒子群动态优化算法(DPCPSO)。首先,利用自动快速密度峰值聚类通过粒子的自身密度和相对距离创建无敏感参数子种群;然后,使用粒子群... 针对常规多种群方法在求解动态优化问题时往往存在多样性缺失现象,提出一种基于自动快速密度峰值聚类的粒子群动态优化算法(DPCPSO)。首先,利用自动快速密度峰值聚类通过粒子的自身密度和相对距离创建无敏感参数子种群;然后,使用粒子群优化(PSO)来寻找最优解,在搜索过程中采用停滞计数器来判断粒子是否停滞,防止种群过早收敛;最后,采用最优粒子重定位策略响应环境变化。为了验证所提出算法的性能,在移动峰值基准(MPB)和广义动态基准生成器(GDBG)测试问题上进行了仿真实验。仿真实验中,所提算法性能与基于亲和传播聚类的动态优化算法(APCPSO)、基于聚类的动态优化(CPSO)算法等其他先进算法相比较,在峰值数大于20以及变化频率为2000和3000时均取得良好的结果。实验结果表明,所提算法更适合求解多模态和快变特性的动态优化问题。 展开更多
关键词 动态优化问题 多种群方法 快速密度峰值 停滞检测 最优粒子重定位策略
在线阅读 下载PDF
基于空间向量搜索的密度峰值聚类算法 被引量:3
13
作者 马振明 安俊秀 《计算机工程与应用》 CSCD 北大核心 2023年第15期123-131,共9页
针对密度峰值聚类(DPC)算法因构建全局样本点间的相似度矩阵,而导致时间开销过大的问题,提出了一种基于空间向量搜索的密度峰值聚类(VS-DPC)算法。在n维正交坐标系中将数据点映射为以原点为起点的空间向量,计算向量的模和与统一坐标轴... 针对密度峰值聚类(DPC)算法因构建全局样本点间的相似度矩阵,而导致时间开销过大的问题,提出了一种基于空间向量搜索的密度峰值聚类(VS-DPC)算法。在n维正交坐标系中将数据点映射为以原点为起点的空间向量,计算向量的模和与统一坐标轴正方向间的夹角;利用截断距离和截断映射角确定相似范围搜索相似向量;利用相似向量确定有效密度点从而构建稀疏相似度矩阵,降低时间复杂度。在UCI数据库中7个真实数据集和7个形状复杂的人工数据集上的实验结果表明,所提的VS-DPC算法保持了DPC的聚类精度,相较DPC算法减少了约60%的时间开销。并对比于CDPC和GDPC两种提升DPC聚类效率的算法,算法参数更少,且在聚类精度和时间上分别平均提升6和18个百分点。 展开更多
关键词 密度峰值 稀疏矩阵 时间复杂度 向量搜索
在线阅读 下载PDF
基于密度峰值聚类并行麻雀搜索算法的食品机器人路径规划 被引量:5
14
作者 郝杰 唐叶剑 《食品与机械》 北大核心 2022年第6期123-130,共8页
目的:提高食品拣取机器人工作效率。方法:提出了一种基于密度峰值聚类并行麻雀搜索算法的食品拣取机器人路径规划方法。建立以总移动距离、点位间路径平滑度和移动安全度为评价指标的食品拣取机器人路径规划模型,在保证机器人移动安全... 目的:提高食品拣取机器人工作效率。方法:提出了一种基于密度峰值聚类并行麻雀搜索算法的食品拣取机器人路径规划方法。建立以总移动距离、点位间路径平滑度和移动安全度为评价指标的食品拣取机器人路径规划模型,在保证机器人移动安全的同时,尽可能提升路径平滑度和降低移动距离。设计密度峰值聚类优化麻雀搜索算法(DSSA),利用改进的密度峰值聚类算法对麻雀种群进行聚类分析,并根据聚类结果划分不同子族群和定义麻雀迭代进化方式;结合多点位路径规划模型和点位间存在的4条潜在移动路径,重新定义麻雀编码方式,搭建并行计算架构,以提高DSSA求解路径规划模型的精度和运算效率。结果:仿真结果表明,相比于其他食品机器人路径规划方法,总移动距离减少了7.3%~39.2%,移动时间降低了26.7%~50.1%。结论:所提方法能够明显改善食品分拣机器人路径规划效率,对提升食品加工企业生产效率具有一定的应用价值。 展开更多
关键词 食品分拣 拣取机器人 麻雀搜索算法 密度峰值算法 路径规划
在线阅读 下载PDF
密度峰值聚类的自适应社区发现算法 被引量:5
15
作者 金志刚 徐珮轩 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第5期44-51,共8页
为减少社区发现算法中参数的选择对社区划分的影响,同时使算法能够自适应地进行社区划分,本文提出一种基于核密度估计的密度峰值聚类的社区发现算法KDED.首先,定义一种基于信任度的距离度量,将社交网络中的用户关系量化为距离矩阵,使用... 为减少社区发现算法中参数的选择对社区划分的影响,同时使算法能够自适应地进行社区划分,本文提出一种基于核密度估计的密度峰值聚类的社区发现算法KDED.首先,定义一种基于信任度的距离度量,将社交网络中的用户关系量化为距离矩阵,使用矩阵元素的大小度量用户关系的紧密程度;然后对距离矩阵进行核密度估计,统计各个节点在网络中的影响大小,结合热扩散模型改进计算流程,使其自适应不同规模的数据集以提高计算精度;结合密度峰值聚类原理和社区属性确定社区中心节点后,可根据节点间的距离得到社区内部层次结构和社区外部的自然结构;最后将剩余节点按距离分配到相应的社区当中以完成社区划分.仿真结果表明:通过可视化软件可观察到,通过KDED算法得到的社区划分结果具有清晰的自然结构和内部层次结构;随着社区规模的提升以及划分难度增加,KDED算法具有出色的稳定性;在真实数据集以及LFR基准网络上均得到较为接近真实划分结果的社区划分,自适应性良好,验证算法的可行性与有效性. 展开更多
关键词 社区发现 密度峰值 信任度 密度估计 自适应
在线阅读 下载PDF
优化分配策略的密度峰值聚类算法 被引量:10
16
作者 丁志成 葛洪伟 《计算机科学与探索》 CSCD 北大核心 2020年第5期792-802,共11页
针对密度峰值聚类算法在面对复杂结构数据集时容易出现分配错误的问题,提出一种优化分配策略的密度峰值聚类算法(ODPC)。新算法首先引入参数积γ,扩大了聚类中心的选取范围;然后使用改进的数据点分配策略,对数据集的数据点进行基于相似... 针对密度峰值聚类算法在面对复杂结构数据集时容易出现分配错误的问题,提出一种优化分配策略的密度峰值聚类算法(ODPC)。新算法首先引入参数积γ,扩大了聚类中心的选取范围;然后使用改进的数据点分配策略,对数据集的数据点进行基于相似度指标MS的重新分配,进一步优化了簇类中点集的分配;最后使用dc近邻法优化识别数据集的噪声点。在人工数据集及UCI真实数据集上的实验均可证明,新算法能够在优化噪声识别的同时,提高复杂流形数据集中数据点分配的正确率,并取得比DPC算法、DenPEHC算法、GDPC算法更好的聚类效果。 展开更多
关键词 密度 快速搜索与发现密度峰值聚类(DPC) 分配策略
在线阅读 下载PDF
基于剪枝策略和密度峰值聚类的行业典型负荷曲线辨识 被引量:19
17
作者 金伟超 张旭 +3 位作者 刘晟源 黄荣国 潘柏良 林振智 《电力系统自动化》 EI CSCD 北大核心 2021年第4期20-28,共9页
辨识不同行业的典型负荷曲线对于配售电公司的运行调度、售电决策和风险管理均有重要意义。鉴于此,提出了一种基于剪枝策略和密度峰值聚类的行业典型负荷曲线辨识方法。首先,提出了衡量负荷曲线位移变化后相似性程度的快速动态时间扭曲(... 辨识不同行业的典型负荷曲线对于配售电公司的运行调度、售电决策和风险管理均有重要意义。鉴于此,提出了一种基于剪枝策略和密度峰值聚类的行业典型负荷曲线辨识方法。首先,提出了衡量负荷曲线位移变化后相似性程度的快速动态时间扭曲(FDTW)距离指标,进而提出了一种搜索FDTW距离的剪枝策略,以实现对负荷曲线间形态差异的精准高效量度。接着,提出了基于加权密度峰值快速搜索聚类算法的行业负荷用电类型划分方法以及用户行业信息错误识别方法。然后,以最小化负荷曲线簇内FDTW距离为目标,提出了基于重心平均算法的行业典型负荷曲线辨识方法。最后,以浙江省某市工商业用户为例进行验证分析,算例结果表明所提方法可以准确量度负荷曲线形态相似性,快速划分行业用电类型并有效辨识具有共同形态特征的典型负荷曲线。 展开更多
关键词 工商业用户 负荷曲线 快速动态时间扭曲 剪枝策略 密度峰值快速搜索
在线阅读 下载PDF
基于密度峰值的标签传播社区发现算法 被引量:5
18
作者 付立东 刘佳会 王秋红 《计算机应用研究》 CSCD 北大核心 2023年第8期2323-2328,共6页
针对标签传播算法中节点启动顺序和更新标签的随机性造成的结果不稳定问题,提出一种新标签传播算法用于复杂网络社区检测(density peaks and node similarity,DPNS-LPA),包括社区中心的确定和外围节点的标签传播。首先利用大度节点不利... 针对标签传播算法中节点启动顺序和更新标签的随机性造成的结果不稳定问题,提出一种新标签传播算法用于复杂网络社区检测(density peaks and node similarity,DPNS-LPA),包括社区中心的确定和外围节点的标签传播。首先利用大度节点不利指标、Jaccard指标和度为1节点的结构特性刻画节点局部相似性指标,并用此指标度量节点间距离和解决最大标签相同时的随机选择;然后引入改进的密度峰值聚类算法寻找社区中心,确定社区数量;最后基于社区中心和外围节点的标签传播,得到最终的社区划分结果。通过人工网络和真实网络上的实验,结果表明标准化互信息、模块度和D-score指标值优于对比算法,所提出的算法可以有效发现复杂网络中的社区结构,且鲁棒性更高。 展开更多
关键词 密度峰值 局部相似度 标签传播 社区发现
在线阅读 下载PDF
移动对象高密度子轨迹聚类算法 被引量:3
19
作者 迟相松 皮德常 关鹏 《小型微型计算机系统》 CSCD 北大核心 2016年第9期2014-2018,共5页
针对传统DBSCAN算法可以发现任意形状的聚类簇,但很难选择出合适参数的问题,将快速搜索高密度点的方法应用到轨迹聚类.融合流失量概念,采用Hausdorff距离替代传统的欧式距离,并用轨迹子段代替轨迹中的点,提出一种快速搜索的移动对象高... 针对传统DBSCAN算法可以发现任意形状的聚类簇,但很难选择出合适参数的问题,将快速搜索高密度点的方法应用到轨迹聚类.融合流失量概念,采用Hausdorff距离替代传统的欧式距离,并用轨迹子段代替轨迹中的点,提出一种快速搜索的移动对象高密度子轨迹聚类算法(HFDST).HFDST算法通过两个参数theRho和the Delta确定聚类中心,利用递归函数Nearest Neighbor确定其它未被分类的轨迹子段,从而解决了DBSCAN算法因两个参数和M in Lns选取过大或过小而影响聚类结果的问题.在真实移动对象轨迹数据上的大量对比实验结果表明,HFDST算法能够在轨迹子段集中发掘出更多隐藏信息,具有更好的聚类效果和更高的时间效率,并且对参数有很好的鲁棒性. 展开更多
关键词 子轨迹 流失量 快速搜索 密度
在线阅读 下载PDF
高密度PCB锡膏喷印的分层路径规划
20
作者 吴振亚 曹鹏彬 +1 位作者 张聪 彭伊丽 《组合机床与自动化加工技术》 北大核心 2025年第1期57-62,68,共7页
针对传统算法求解高密度印制电路板锡膏喷印路径规划问题存在收敛速度慢、易陷入局部最优的不足,提出了一种融合密度峰值聚类算法和蚁群算法的分层路径规划方法。利用密度峰值聚类算法处理分布呈矩形或线形的高密度焊盘,将原始问题分解... 针对传统算法求解高密度印制电路板锡膏喷印路径规划问题存在收敛速度慢、易陷入局部最优的不足,提出了一种融合密度峰值聚类算法和蚁群算法的分层路径规划方法。利用密度峰值聚类算法处理分布呈矩形或线形的高密度焊盘,将原始问题分解为上层聚类中心与下层小规模子问题集合;蚁群算法求解下层子问题获得子路径集合,求解上层聚类中心得到初始全局路径的重组路线;为避免子路径重组过程中陷入局部最优,利用局部搜索算法对初始全局路径进行二次优化,得到最优全局路径。实验结果表明,该分层路径规划方法降低了全局路径求解的复杂度,提升了算法收敛速度,缩短了加工路径总长度,有效提高了高密度印制电路板锡膏喷印的加工效率。 展开更多
关键词 锡膏喷印 分层路径规划 密度印制电路板 密度峰值 蚁群算法 局部搜索
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部