针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问...针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问题。基于降维概念的胞元法,将C构型空间(configuration space,C空间)划分为大小相等的单元格,解决经典RRT中最近邻搜索(nearest neighbor search,NNS)在计算时间和资源方面效率低的问题。实验结果表明:在相同实验条件下,改进的RRT算法比双向RRT算法计算时间减少89.5%,能提高计算时间效率和提升搜寻路径质量,具有一定的参考价值。展开更多
面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在...面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在此基础上引入目标概率偏向方法,提高路径搜索效率;最后,对生成的路径进行简化节点处理以减少路径代价,并使用三次B样条方法平滑路径。仿真实验结果表明:二维环境下,GA-RRT算法相较于RRT、RRT-Connect算法,耗时缩短85.15%、29.86%,路径代价减少19.18%、18.26%;机械臂仿真环境下,与引入目标概率偏向方法的RRT算法进行比较,耗时缩短54.70%,路径代价减少51.59°。利用IRB120机械臂实验平台,验证了算法的可行性。展开更多
智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是...智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是否满足需求就非常重要.然而,作为路径规划算法的输入,任务空间中威胁障碍物的分布形式复杂且多样.此外,路径规划算法在为每个测试用例规划路径时,通常需要较高的运行代价.为了提升路径规划算法的测试效率,将动态随机测试思想引入到路径规划算法中,提出了面向智能体路径规划算法的动态随机测试方法(dynamic random testing approach for intelligent agent path planning algorithms,DRT-PP).具体来说,DRT-PP对路径规划任务空间进行离散划分,并在每个子区域内引入威胁生成概率,进而构建测试剖面,该测试剖面可以作为测试策略在测试用例生成过程中使用.此外,DRT-PP在测试过程中通过动态调整测试剖面,使其逐渐优化,从而提升测试效率.实验结果显示,与随机测试及自适应随机测试相比,DRT-PP方法能够在保证测试用例多样性的同时,生成更多能够暴露被测算法性能缺陷的测试用例.展开更多
路径规划是移动机器人的重要研究内容。快速扩展随机树(Rapidly-Exploring Random Tree,RRT)算法因在机器人路径规划中的成功应用,自提出以来就得到了极大的研究与发展。快速扩展随机树作为一种新颖的随机节点采样算法,相对传统路径规...路径规划是移动机器人的重要研究内容。快速扩展随机树(Rapidly-Exploring Random Tree,RRT)算法因在机器人路径规划中的成功应用,自提出以来就得到了极大的研究与发展。快速扩展随机树作为一种新颖的随机节点采样算法,相对传统路径规划算法,具有建模时间短、搜索能力强、方便添加非完整约束等优点。介绍了快速扩展随机树算法的基本原理与性质,并从单向随机树扩展、多向随机树扩展、其他改进等方面概括了算法的研究现状。最后,展望了算法未来的研究方向与挑战。展开更多
面对多障碍、大尺寸障碍、狭窄通道等特殊环境下的USV路径规划问题,快速扩展随机树算法(rapidly-exploring random trees,RRT)存在采样基数大、规划成功率低、规划路径曲折等缺点。基于双延迟深度确定性策略梯度(twin delayed deep dete...面对多障碍、大尺寸障碍、狭窄通道等特殊环境下的USV路径规划问题,快速扩展随机树算法(rapidly-exploring random trees,RRT)存在采样基数大、规划成功率低、规划路径曲折等缺点。基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)提出一种全局路径规划算法(TD3-RRT)。结合RRT算法与深度强化学习建立USV路径搜索模型,利用前视探测感知环境以自适应调整扩展步长,通过策略网络输出路径搜索方向,解决RRT算法扩展盲目的问题;改进后见经验回放策略,通过重选虚拟目标、双经验回放池采样等策略以增强复杂环境下路径搜索能力;通过奖励函数提高规划路径质量,加快路径搜索速度。实验结果表明:不同环境下TD3-RRT相比当前主流算法能够有效提高规划成功率,优化转向角度、路径长度和规划时间,证明了改进算法能有效加快路径搜索速度并提高路径质量,且对不同环境具有良好适应性。展开更多
文摘针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问题。基于降维概念的胞元法,将C构型空间(configuration space,C空间)划分为大小相等的单元格,解决经典RRT中最近邻搜索(nearest neighbor search,NNS)在计算时间和资源方面效率低的问题。实验结果表明:在相同实验条件下,改进的RRT算法比双向RRT算法计算时间减少89.5%,能提高计算时间效率和提升搜寻路径质量,具有一定的参考价值。
文摘面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在此基础上引入目标概率偏向方法,提高路径搜索效率;最后,对生成的路径进行简化节点处理以减少路径代价,并使用三次B样条方法平滑路径。仿真实验结果表明:二维环境下,GA-RRT算法相较于RRT、RRT-Connect算法,耗时缩短85.15%、29.86%,路径代价减少19.18%、18.26%;机械臂仿真环境下,与引入目标概率偏向方法的RRT算法进行比较,耗时缩短54.70%,路径代价减少51.59°。利用IRB120机械臂实验平台,验证了算法的可行性。
文摘智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是否满足需求就非常重要.然而,作为路径规划算法的输入,任务空间中威胁障碍物的分布形式复杂且多样.此外,路径规划算法在为每个测试用例规划路径时,通常需要较高的运行代价.为了提升路径规划算法的测试效率,将动态随机测试思想引入到路径规划算法中,提出了面向智能体路径规划算法的动态随机测试方法(dynamic random testing approach for intelligent agent path planning algorithms,DRT-PP).具体来说,DRT-PP对路径规划任务空间进行离散划分,并在每个子区域内引入威胁生成概率,进而构建测试剖面,该测试剖面可以作为测试策略在测试用例生成过程中使用.此外,DRT-PP在测试过程中通过动态调整测试剖面,使其逐渐优化,从而提升测试效率.实验结果显示,与随机测试及自适应随机测试相比,DRT-PP方法能够在保证测试用例多样性的同时,生成更多能够暴露被测算法性能缺陷的测试用例.
文摘路径规划是移动机器人的重要研究内容。快速扩展随机树(Rapidly-Exploring Random Tree,RRT)算法因在机器人路径规划中的成功应用,自提出以来就得到了极大的研究与发展。快速扩展随机树作为一种新颖的随机节点采样算法,相对传统路径规划算法,具有建模时间短、搜索能力强、方便添加非完整约束等优点。介绍了快速扩展随机树算法的基本原理与性质,并从单向随机树扩展、多向随机树扩展、其他改进等方面概括了算法的研究现状。最后,展望了算法未来的研究方向与挑战。
文摘面对多障碍、大尺寸障碍、狭窄通道等特殊环境下的USV路径规划问题,快速扩展随机树算法(rapidly-exploring random trees,RRT)存在采样基数大、规划成功率低、规划路径曲折等缺点。基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)提出一种全局路径规划算法(TD3-RRT)。结合RRT算法与深度强化学习建立USV路径搜索模型,利用前视探测感知环境以自适应调整扩展步长,通过策略网络输出路径搜索方向,解决RRT算法扩展盲目的问题;改进后见经验回放策略,通过重选虚拟目标、双经验回放池采样等策略以增强复杂环境下路径搜索能力;通过奖励函数提高规划路径质量,加快路径搜索速度。实验结果表明:不同环境下TD3-RRT相比当前主流算法能够有效提高规划成功率,优化转向角度、路径长度和规划时间,证明了改进算法能有效加快路径搜索速度并提高路径质量,且对不同环境具有良好适应性。