期刊文献+
共找到407篇文章
< 1 2 21 >
每页显示 20 50 100
面向雷达信号预分选的粒子群快速密度聚类算法
1
作者 路心雨 黄永辉 +2 位作者 崔天舒 朱岩 韩佳宝 《电讯技术》 北大核心 2025年第10期1587-1594,共8页
为了在复杂多变的电子战场景下对密集重叠的雷达脉冲信号进行快速准确的分选,稀释脉冲流,解决现有基于密度的空间聚类算法(Density-based Spatial Clustering of Applications with Noise,DBSCAN)在分选时易受干扰点影响、聚类参数需要... 为了在复杂多变的电子战场景下对密集重叠的雷达脉冲信号进行快速准确的分选,稀释脉冲流,解决现有基于密度的空间聚类算法(Density-based Spatial Clustering of Applications with Noise,DBSCAN)在分选时易受干扰点影响、聚类参数需要人为设置、算法复杂度高的问题,提出了一种面向雷达信号预分选的粒子群快速密度聚类算法(Particle Swarm Fast Density Clustering Algorithm,PSK-DBSCAN)。该算法首先引入数据场理论剔除雷达脉冲信号里的干扰点,提升了分选准确度;其次,引入粒子群算法并设计了基于轮廓系数的适应度函数,自适应地获得最优聚类参数;最后,使用K-D(K-Dimensional)树降低DBSCAN的算法复杂度,减少分选时间。经实验验证,算法可以对复杂交错的雷达脉冲信号实现快速聚类分选,正确率达到98.9%,性能稳定。 展开更多
关键词 雷达信号分选 数据场 粒子群算法 K-D树 密度
在线阅读 下载PDF
改进的密度峰值聚类算法在岩体结构面优势分组中的应用
2
作者 王述红 高晨翔 侯钦宽 《东北大学学报(自然科学版)》 北大核心 2025年第3期130-137,共8页
岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,... 岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,基于有效性评价指标构建目标函数,并利用乌鸦算法优化截断距离以获取最佳分组结果.通过模拟数据集验证了该算法能够有效减少人为干预,避免异常点干扰,确保聚类结果更加可靠和合理.结果表明,所提方法不仅与传统方法一致性良好,还具有更高的适用性,为工程中结构面优势分组提供了可靠的参考. 展开更多
关键词 密度峰值 乌鸦算法 有效性评价指标 结构面 优势分组
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
3
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度算法 子簇融合
在线阅读 下载PDF
基于高斯分布的自适应密度峰值聚类算法
4
作者 李启文 王治和 +1 位作者 杜辉 鲁德鹏 《计算机工程》 北大核心 2025年第4期137-148,共12页
密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度... 密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度和相对距离的乘积θ_(i),通过Z-score标准化方法,将θ_(i)映射到符合高斯分布的二维空间中,利用高斯分布的标准偏差来自适应选取聚类中心,得到聚类中心集合;其次,将其余数据点分配到离其最近的聚类中心所在的簇中,得到初步划分结果;最后,设计缝合因子模型,计算簇间缝合系数,当缝合系数大于阈值时合并初步划分结果中最相似簇并更新相似度矩阵,直至完成合并得到最终结果。在人工数据集和真实数据集上的实验结果表明,与DBSCAN算法、DPC算法和ICKDC算法对比,所提算法的聚类准确度更高,聚类性能更佳。 展开更多
关键词 密度峰值算法 高斯分布 Z-score标准化 缝合因子 簇间相似度
在线阅读 下载PDF
一种基于参考点和密度的快速聚类算法 被引量:108
5
作者 马帅 王腾蛟 +2 位作者 唐世渭 杨冬青 高军 《软件学报》 EI CSCD 北大核心 2003年第6期1089-1095,共7页
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering using references and density)聚类算... 数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering using references and density)聚类算法,其创新点在于,通过参考点来准确地反映数据的空间几何特征,然后基于参考点对数据进行分析处理.CURD算法保持了基于密度的聚类算法的上述优点,而且CURD算法具有近似线性的时间复杂性,因此CURD算法适合对大规模数据的挖掘.理论分析和实验结果也证明了CURD算法具有处 理任意形状的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的基于R*-树的DBSCAN算法. 展开更多
关键词 快速算法 密度 高维 参考点 数据挖掘
在线阅读 下载PDF
基于人工鱼群的自适应密度峰值聚类算法 被引量:2
6
作者 何凯琳 张正军 +1 位作者 位雅 唐莉 《计算机工程与设计》 北大核心 2024年第1期110-119,共10页
针对密度峰值聚类算法中截断距离d c和聚类中心缺乏选取依据,以及对簇中存在多密度峰值的数据无法准确聚类问题,提出一种基于人工鱼群的自适应密度峰值聚类算法(AFSADPC)。选择簇中心权值γ大于幂律分布上分位数的样本点作为聚类中心,... 针对密度峰值聚类算法中截断距离d c和聚类中心缺乏选取依据,以及对簇中存在多密度峰值的数据无法准确聚类问题,提出一种基于人工鱼群的自适应密度峰值聚类算法(AFSADPC)。选择簇中心权值γ大于幂律分布上分位数的样本点作为聚类中心,根据两个相邻簇的簇间边界区域密度与簇平均密度构造簇间合并规则,利用人工鱼群算法寻找使改进轮廓系数指标达到最大值时的最优截断距离d_(c)。在合成数据集和真实数据集上的实验结果表明,AFSADPC算法具有较好的聚类效果。 展开更多
关键词 密度峰值 算法 人工鱼群算法 截断距离 幂律分布 簇合并策略 轮廓系数
在线阅读 下载PDF
一种基于密度的快速聚类算法 被引量:90
7
作者 周水庚 周傲英 +1 位作者 曹晶 胡运发 《计算机研究与发展》 EI CSCD 北大核心 2000年第11期1287-1292,共6页
聚类是数据挖掘领域中的一个重要研究方向 .聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用 .迄今为止人们提出了许多用于大规模数据库的聚类算法 .基于密度的聚类算法 DBSCAN就是一个典型代表 .以 DBSCAN为基础 ,提出了... 聚类是数据挖掘领域中的一个重要研究方向 .聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用 .迄今为止人们提出了许多用于大规模数据库的聚类算法 .基于密度的聚类算法 DBSCAN就是一个典型代表 .以 DBSCAN为基础 ,提出了一种基于密度的快速聚类算法 .新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类 ,从而减少区域查询次数 ,降低 I/ O开销 ,实现快速聚类 .对二维空间数据测试表明 :快速算法能够有效地对大规模数据库进行聚类 ,速度上数倍于已有 DBSCAN算法 . 展开更多
关键词 数据挖掘 密度 快速算法 数据库
在线阅读 下载PDF
融合优化可调Q因子小波变换的改进密度峰值聚类算法 被引量:2
8
作者 史曼曼 宋朝炀 张景祥 《计算机应用研究》 CSCD 北大核心 2024年第2期466-472,共7页
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化... 为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。 展开更多
关键词 密度峰值算法 可调Q因子小波变换 粒子群优化算法 主成分分析
在线阅读 下载PDF
基于改进快速密度峰值算法的电力负荷曲线聚类分析 被引量:26
9
作者 陈俊艺 丁坚勇 +4 位作者 田世明 卜凡鹏 朱炳翔 黄事成 周凯 《电力系统保护与控制》 EI CSCD 北大核心 2018年第20期85-93,共9页
为解决传统聚类算法对大数据背景下高维海量、类簇形状差异巨大的电力负荷曲线进行聚类分析时存在的聚类结果不稳定、聚类效果较差、聚类速度慢和内存消耗过大等问题,提出一种改进的快速密度峰值聚类算法。首先应用主成分分析法对归一... 为解决传统聚类算法对大数据背景下高维海量、类簇形状差异巨大的电力负荷曲线进行聚类分析时存在的聚类结果不稳定、聚类效果较差、聚类速度慢和内存消耗过大等问题,提出一种改进的快速密度峰值聚类算法。首先应用主成分分析法对归一化后的负荷曲线集进行降维处理,以减少样本向量间欧式距离的计算量和加快后续操作。然后利用kd树算法对降维后的数据进行快速K近邻搜索生成KNN矩阵。最后以KNN矩阵代替原算法的距离矩阵作为输入数据。在基于KNN改进的样本局部密度和距离计算准则的基础上,运用快速密度峰值算法对负荷曲线进行聚类分析。通过实验和算例分析验证了所提改进算法的实用性和有效性。 展开更多
关键词 电力大数据 负荷曲线 快速密度峰值算法 主成分分析 KD树 KNN算法
在线阅读 下载PDF
基于类簇合并的无参数密度峰值聚类算法 被引量:1
10
作者 刘天娇 王胜景 袁永生 《现代电子技术》 北大核心 2024年第8期1-8,共8页
密度峰值聚类算法(DPC)通过决策图直观地找到类簇中心进而完成聚类,是一种简单高效的聚类算法。然而,DPC算法的截断距离和类簇中心都是人为确定的,受主观影响较大,具有不确定性。针对上述问题,提出一种基于类簇合并的无参数密度峰值聚... 密度峰值聚类算法(DPC)通过决策图直观地找到类簇中心进而完成聚类,是一种简单高效的聚类算法。然而,DPC算法的截断距离和类簇中心都是人为确定的,受主观影响较大,具有不确定性。针对上述问题,提出一种基于类簇合并的无参数密度峰值聚类算法(NDPCCM)。首先根据样本点两两之间的相似度的分布特征将其分为类内相似度和类间相似度两种类型,并利用类内相似度自动确定截断相似度,避免了人为设置参数;接着根据簇中心权值的下降趋势自动选择初始类簇中心,得到初始类簇;最后通过合并初始类簇对初步聚类结果进行优化,提高了聚类的准确性。在人工数据集和UCI真实数据集上,将所提算法与DPC、DBSCAN、K-means算法进行对比实验。结果表明所提算法无需输入参数就能够自动得到类簇,且聚类性能优于其他算法。 展开更多
关键词 分析 密度峰值算法 初始 簇合并 相似度 性能
在线阅读 下载PDF
基于密度聚类算法和广度优先搜索算法的道岔摩擦电流智能分析系统 被引量:1
11
作者 邱晓莉 韩思远 +1 位作者 熊庆 余东 《城市轨道交通研究》 北大核心 2024年第4期114-118,共5页
[目的]现场的道岔摩擦电流测试与调整存在流程繁琐且风险高、对检修人员专业水平要求高、测定数值的主观性占比大3个弊端,为此需要基于各类智能算法及技术提升道岔的智能运维水平。[方法]分析了道岔摩擦电流测试曲线4个阶段的特征,提出... [目的]现场的道岔摩擦电流测试与调整存在流程繁琐且风险高、对检修人员专业水平要求高、测定数值的主观性占比大3个弊端,为此需要基于各类智能算法及技术提升道岔的智能运维水平。[方法]分析了道岔摩擦电流测试曲线4个阶段的特征,提出建立道岔摩擦电流的智能分析系统。阐述了该系统的功能及工作原理,设定了该系统的摩擦电流标准值及阈值范围。该系统可基于密度聚类算法和广度优先搜索算法自动获取道岔摩擦电流值。介绍了该系统的调试界面截图,以说明系统在获取道岔摩擦电流值如何为现场检修人员提供操作建议。[结果及结论]该智能系统具有良好的可用性,实现了节约检修时间、降低维护成本和提高检修效率的既定目的。 展开更多
关键词 城市轨道交通 信号 智能运维 道岔转辙机 摩擦电流 密度算法 广度优先搜索算法
在线阅读 下载PDF
基于密度的计算机兵棋推演数据快速聚类算法 被引量:5
12
作者 石崇林 张茂军 +2 位作者 吴琳 唐宇波 景民 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2428-2433,共6页
针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上... 针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上的缺陷。QDBSCAN算法在基于密度的空间聚类算法(density based spatial cluste-ring of applications with noise,DBSCAN)算法的基础上做了相关改进:在邻近度度量上提出了最短可行路径的概念,使聚类更符合计算机兵棋的规则;动态设置密度参数;采用提出的代表对象选择方法来减少对对象邻域的判断次数;按区域对数据进行分组以缩小聚类规模。实验表明,QDBSCAN算法的性能在数据规模较大的情况下,明显优于DBSCAN算法。 展开更多
关键词 数据挖掘 兵棋推演数据 基于密度算法 最短可行路径
在线阅读 下载PDF
复杂高维数据的密度峰值快速搜索聚类算法 被引量:13
13
作者 陈俊芬 张明 赵佳成 《计算机科学》 CSCD 北大核心 2020年第3期79-86,共8页
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了... 机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。 展开更多
关键词 密度峰值 DPC算法 特征表示 流形距离
在线阅读 下载PDF
“密度-距离”快速搜索聚类算法及其在共词聚类中的应用 被引量:11
14
作者 李秀霞 邵作运 《情报学报》 CSSCI 北大核心 2016年第4期380-388,共9页
"密度-距离"快速搜索聚类算法的核心思想是:聚为一类的核心节点的密度最大,核心节点与其他密度更大的节点之间的距离相对更大。为丰富文献计量学的方法体系,本文将该算法引入到共词聚类分析中。以"学科服务"为研究... "密度-距离"快速搜索聚类算法的核心思想是:聚为一类的核心节点的密度最大,核心节点与其他密度更大的节点之间的距离相对更大。为丰富文献计量学的方法体系,本文将该算法引入到共词聚类分析中。以"学科服务"为研究主题,利用Bicomb形成共词矩阵,在Matlab环境中将其转换为三元组相似距离表,最后利用"密度一距离"快速搜索聚类算法将学科服务研究主题自动确定为5个研究类团,并给出了对应的类中心、实现了聚类结果的可视化。与已有工具软件(如SPSS、Ucinet、Citespace)内嵌的聚类算法的聚类效果相比,本文方法最大的优势是不需要进行多次迭代,耗时少;自动确定聚类中心的类名、类团的数目等;而且聚类结果理想,可视化效果较好。 展开更多
关键词 密度-距离 快速搜索 分析 共词
在线阅读 下载PDF
一种融合K-means和快速密度峰值搜索算法的聚类方法 被引量:13
15
作者 盛华 张桂珠 《计算机应用与软件》 CSCD 2016年第10期260-264,269,共6页
K-means算法的初始聚类中心是随机选取的,不同的初始中心输入会得出不同的聚类结果。针对K-means算法存在的问题,提出一种融合K-means算法与聚类的快速搜索和发现密度峰算法的聚类算法(K-CBFSAFODP)。该算法是这样考虑的:类簇中心被具... K-means算法的初始聚类中心是随机选取的,不同的初始中心输入会得出不同的聚类结果。针对K-means算法存在的问题,提出一种融合K-means算法与聚类的快速搜索和发现密度峰算法的聚类算法(K-CBFSAFODP)。该算法是这样考虑的:类簇中心被具有较低局部密度的邻居点包围,且与具有更高密度的任何点都有相对较大的距离,以此来刻画聚类中心;再运用K-means算法进行迭代聚类,弥补了K-means聚类中心随机选取导致容易陷入局部最优的缺点;并且引入了熵值法用来计算距离,从而实现优化聚类。在UCI数据集和人工模拟数据集上的实验表明,融合算法不仅能得到较好的聚类结果,而且聚类很稳定,同时也有较快的收敛速度,证实了该融合算法的可行性。 展开更多
关键词 K-MEANS算法 CBFSAFODP算法 初始中心 密度 信息熵
在线阅读 下载PDF
快速识别密度骨架的聚类算法 被引量:5
16
作者 邱保志 唐雅敏 《计算机应用》 CSCD 北大核心 2017年第12期3482-3486,共5页
针对如何快速寻找密度骨架、提高高维数据聚类准确性的问题,提出一种快速识别高密度骨架的聚类(ECLUB)算法。首先,在定义了对象局部密度的基础上,根据互k近邻一致性及近邻点局部密度关系,快速识别出高密度骨架;然后,对未分配的低密度点... 针对如何快速寻找密度骨架、提高高维数据聚类准确性的问题,提出一种快速识别高密度骨架的聚类(ECLUB)算法。首先,在定义了对象局部密度的基础上,根据互k近邻一致性及近邻点局部密度关系,快速识别出高密度骨架;然后,对未分配的低密度点依据邻近关系进行划分,得到最终聚类。人工合成数据集及真实数据集上的实验验证了所提算法的有效性,在Olivetti Face数据集上的聚类结果显示,ECLUB算法的调整兰德系数(ARI)和归一化互信息(NMI)分别为0.877 9和0.962 2。与经典的基于密度的聚类算法(DBSCAN)、密度中心聚类算法(CFDP)以及密度骨架聚类算法(CLUB)相比,所提ECLUB算法效率更高,且对于高维数据聚类准确率更高。 展开更多
关键词 算法 高维数据 K近邻 密度骨架 局部密度
在线阅读 下载PDF
基于快速搜索与发现密度峰值聚类算法的含有分布式光伏的配电网电压分区协调控制 被引量:21
17
作者 张赟宁 石泽 《现代电力》 北大核心 2020年第1期35-41,共7页
随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为... 随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为基础计算节点电气距离,根据电气距离构建节点相似度矩阵,并采用快速搜索与发现密度峰值聚类算法对配电网进行快速分区;然后考虑本地光伏独立调压能力的不足,提出了一种先无功后有功的电压分区协调控制策略;最后通过IEEE33配电网算例的仿真结果验证了该分区方法的快速性和电压分区协调控制策略的有效性。 展开更多
关键词 电压集中控制 综合电压灵敏度 电气距离 快速搜索与发现密度峰值 电压分区协调控制
在线阅读 下载PDF
基于引力核密度聚类算法的作物病害叶片区域的快速检测
18
作者 刘哲 黄文准 王利平 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期488-494,共7页
针对作物病害叶片图像的复杂性和模糊性,提出一种基于引力核密度聚类算法的作物叶片病害区域快速检测方法:首先,在RGB颜色空间提取病害叶片图像的R通道值,根据R值的特征直方图特性,运用多项式拟合特征直方图曲线,根据导数性质确定拟合... 针对作物病害叶片图像的复杂性和模糊性,提出一种基于引力核密度聚类算法的作物叶片病害区域快速检测方法:首先,在RGB颜色空间提取病害叶片图像的R通道值,根据R值的特征直方图特性,运用多项式拟合特征直方图曲线,根据导数性质确定拟合特征直方图曲线的峰值点和峰值区域,确定病害叶片图像聚类数和初始聚类中心;根据初步确定的病变叶片图像的聚类中心,运用引力核密度聚类算法快速完成对病害叶片病斑的分割。试验结果表明,基于引力核密度聚类算法的平均分割精度达80%以上,平均检测时间为4.912 s,优于已有病害区域分割算法K–means和Meanshift的性能。 展开更多
关键词 引力核密度算法 作物病害叶片 图像分割 颜色空间
在线阅读 下载PDF
基于谱分析的密度峰值快速聚类算法
19
作者 韩忠华 毕开元 +1 位作者 司雯 吕哲 《计算机应用》 CSCD 北大核心 2019年第2期409-413,共5页
针对密度峰值快速聚类(CFSFDP)算法对不同数据集聚类效果的差异,利用谱聚类对密度峰值快速聚类算法加以改进,提出了一种基于谱分析的密度峰值快速聚类算法CFSFDP-SA。首先,将高维非线性的数据集映射到低维子空间上实现降维处理,将聚类... 针对密度峰值快速聚类(CFSFDP)算法对不同数据集聚类效果的差异,利用谱聚类对密度峰值快速聚类算法加以改进,提出了一种基于谱分析的密度峰值快速聚类算法CFSFDP-SA。首先,将高维非线性的数据集映射到低维子空间上实现降维处理,将聚类问题转化为图的最优划分问题以增强算法对数据全局结构的适应性;然后,利用CFSFDP算法对处理后的数据集进行聚类。结合这两种聚类算法各自的优势,能进一步提升聚类算法的性能。在5个人工合成数据集(2个线性数据集和3个非线性数据集)与4个UCI数据库中真实数据集上的聚类结果显示,相比CFSFDP算法,CFSFDP-SA算法的聚类精度有一定提升,在高维数据集的聚类精度上最多提高了14%,对原始数据集的适应性更强。 展开更多
关键词 数据 适应性 降维 密度峰值快速 谱分析
在线阅读 下载PDF
近邻关系约束和簇心扩散的密度峰值聚类算法
20
作者 杨重阳 徐华 张紫丹 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2830-2837,共8页
研究表明,对于非球形簇和密度不均匀的聚类,DPC很难选择正确的簇中心;同时,DPC的分配方法存在多米诺骨牌效应,即不正确的分配一个区域中密度最高的点,将导致该区域中的所有点都指向同一个错误的聚类.为了解决这两个不足,本文提出了近邻... 研究表明,对于非球形簇和密度不均匀的聚类,DPC很难选择正确的簇中心;同时,DPC的分配方法存在多米诺骨牌效应,即不正确的分配一个区域中密度最高的点,将导致该区域中的所有点都指向同一个错误的聚类.为了解决这两个不足,本文提出了近邻关系约束和簇心扩散的密度峰值聚类算法(DPC-NCCD).首先,引入了k近邻和二阶k近邻来重新定义局部密度,避免了密度不均匀的数据集在选取密度峰值时候出现的错误,确保簇心选择的正确性;其次,对于剩余样本的分配,本文采用三阶段的分配策略,每个阶段中依据不同的近邻关系约束条件来逐步扩大类簇.这样的分配策略可以缓解多米诺效应,并提高在流形数据集上的正确性.通过人工数据和真实数据的测试,证明了该算法在密度不均匀的流形数据集上具有良好的聚类性能. 展开更多
关键词 算法 密度峰值 K近邻 二阶K近邻
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部