针对当前小目标图像阈值分割研究工作面临的难题,提出了快速核密度估计图像阈值分割新方法.首先给出了基于加权核密度估计器的概率计算模型,通过引入二阶Renyi熵作为阈值选取准则,提出了基于核密度估计的图像阈值分割算法(Kernel densit...针对当前小目标图像阈值分割研究工作面临的难题,提出了快速核密度估计图像阈值分割新方法.首先给出了基于加权核密度估计器的概率计算模型,通过引入二阶Renyi熵作为阈值选取准则,提出了基于核密度估计的图像阈值分割算法(Kernel density estimator based image thresholding algorithm,KDET),然后通过引入快速压缩集密度估计(Fastreduced set density estimator,FRSDE)技术,得到核密度估计的稀疏权系数表示形式,提出快速核密度估计图像阈值分割算法fastKDET,并从理论上对相关性质进行了深入探讨.实验表明,本文算法对小目标图像阈值分割问题具有更广泛的适应性,并且对参数变化不敏感.展开更多
文摘针对当前小目标图像阈值分割研究工作面临的难题,提出了快速核密度估计图像阈值分割新方法.首先给出了基于加权核密度估计器的概率计算模型,通过引入二阶Renyi熵作为阈值选取准则,提出了基于核密度估计的图像阈值分割算法(Kernel density estimator based image thresholding algorithm,KDET),然后通过引入快速压缩集密度估计(Fastreduced set density estimator,FRSDE)技术,得到核密度估计的稀疏权系数表示形式,提出快速核密度估计图像阈值分割算法fastKDET,并从理论上对相关性质进行了深入探讨.实验表明,本文算法对小目标图像阈值分割问题具有更广泛的适应性,并且对参数变化不敏感.