期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究 被引量:33
1
作者 闫贺 黄佳 +3 位作者 李睿安 王旭东 张劲东 朱岱寅 《电子与信息学报》 EI CSCD 北大核心 2021年第3期615-622,共8页
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习... 针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。 展开更多
关键词 视频SAR 运动目标检测 快速区域卷积神经网络 特征金字塔网络 K-MEANS
在线阅读 下载PDF
基于生成对抗网络改进的更快速区域卷积神经网络交通标志检测 被引量:4
2
作者 高忠文 于立国 《汽车技术》 CSCD 北大核心 2020年第7期14-18,共5页
针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数... 针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数量,生成包含小目标的候选区域,再使用生成网络对候选区域中的模糊小目标进行上采样,生成高分辨率图像,最后使用分类损失函数与回归损失函数对判别网络进行改进。试验结果表明,Faster R-CNN和生成对抗网络相结合的检测算法可以提高远距离小目标交通标志检测性能。 展开更多
关键词 交通标志检测 快速区域卷积神经网络 生成对抗网络 超分辨重建
在线阅读 下载PDF
基于卷积神经网络的半身裙款式特征分类识别 被引量:9
3
作者 邓莹洁 罗戎蕾 《现代纺织技术》 北大核心 2021年第6期98-105,共8页
针对服装特征分类识别不够全面、较多分类特征导致效果较差的问题,提出一种带有Inception v2模组的快速区域卷积神经网络模型的女装半身裙多特征分类识别方法。建立一个包含8类款式、11种颜色、5种图案、4种长度,共计28种类别标签的女... 针对服装特征分类识别不够全面、较多分类特征导致效果较差的问题,提出一种带有Inception v2模组的快速区域卷积神经网络模型的女装半身裙多特征分类识别方法。建立一个包含8类款式、11种颜色、5种图案、4种长度,共计28种类别标签的女装半身裙样本库;以快速区域卷积神经网络(Faster r-cnn)结构为基础,引入一个Inception v2模组,对半身裙的款式及多种特征进行学习训练,通过全连接层将来自Faster r-cnn主干网络和Inception v2的分类信息进行特征融合并共享损失,以提高算法的准确率;将目标检测框与分类结果一起输出,在对半身裙图像精准定位的基础上实现了半身裙款式及常见特征的分类识别。结果表明:该方法的平均分类准确率为92.8%,可以有效地对女装半身裙款式、特征进行分类识别,并且可用于实际场景的服装图片中。 展开更多
关键词 卷积神经网络 Inception v2模组 快速区域卷积神经网络 女装半身裙
在线阅读 下载PDF
基于改进快速区域卷积网络的目标检测轻量化算法 被引量:4
4
作者 马月红 孔梦瑶 《兵工学报》 EI CAS CSCD 北大核心 2021年第12期2664-2674,共11页
基于深度学习的目标检测算法已成为合成孔径雷达(SAR)图像目标检测任务的主流。深层网络通常具有大量参数,运行速度不能满足实时要求,难以在资源受限的设备(如移动端)上部署。考虑到对模型实时性和可移植性的要求,对双阶段目标检测算法... 基于深度学习的目标检测算法已成为合成孔径雷达(SAR)图像目标检测任务的主流。深层网络通常具有大量参数,运行速度不能满足实时要求,难以在资源受限的设备(如移动端)上部署。考虑到对模型实时性和可移植性的要求,对双阶段目标检测算法快速区域卷积神经网络进行轻量化改进,比较不同改进方法对算法速度与精度的影响。结合SAR图像的特点,优化轻量化模型,与单阶段目标检测算法的单脉冲多盒检测网络对比。仿真实验结果表明,改进轻量化模型在保持原有精度水平下,模型占用内存和算法运算量大大减少,可有效满足SAR图像目标检测的实时性要求。 展开更多
关键词 目标检测 快速卷积神经网络 合成孔径雷达 轻量化算法 实时性
在线阅读 下载PDF
联合生成对抗网络和检测网络的SAR图像目标检测
5
作者 韩子硕 王春平 +1 位作者 付强 赵斌 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第3期164-175,共12页
针对合成孔径雷达图像目标检测中存在的样本获取困难且数量有限问题,提出了联合生成对抗网络和检测网络的学习模型。利用原始训练集对特别设计的超快区域卷积神经网络进行预训练;通过基于注意力机制的深度学习生成对抗网络生成高质量合... 针对合成孔径雷达图像目标检测中存在的样本获取困难且数量有限问题,提出了联合生成对抗网络和检测网络的学习模型。利用原始训练集对特别设计的超快区域卷积神经网络进行预训练;通过基于注意力机制的深度学习生成对抗网络生成高质量合成样本,并输入检测网络进行预测;依据预测信息和概率等价类属标签分配策略为新生样本提供注释信息,并以一定占比对原始训练集进行扩充;利用扩充数据集对检测网络进行再训练。多组仿真实验证明,所提框架能够有效提升网络检测效率和性能。 展开更多
关键词 生成对抗网络 快速区域卷积神经网络 合成孔径雷达 目标检测
在线阅读 下载PDF
基于边缘分割与改进CNN的CT影像预诊断技术
6
作者 董聪慧 岳晓磊 马朋朋 《电子设计工程》 2024年第21期146-150,共5页
针对基于图像识别的智能预诊断精确度较低的问题,文中提出了一种融合边缘分割与改进CNN的CT影像预诊断算法。在Bandelet变换的基础上构建WTS-MRF模型,并采用分割递归算法对CT影像的特征区域进行处理,进而设计出基于决策输出补偿的Faster... 针对基于图像识别的智能预诊断精确度较低的问题,文中提出了一种融合边缘分割与改进CNN的CT影像预诊断算法。在Bandelet变换的基础上构建WTS-MRF模型,并采用分割递归算法对CT影像的特征区域进行处理,进而设计出基于决策输出补偿的Faster R-CNN预诊断识别算法。同时还利用了脑出血、肺结核和肾结石等典型病例影像的数据样本,通过设置对比实验验证了该算法的预诊断可靠性。相较于同类预诊断识别方法,所提算法的准确率提升了6%,CT影像的分割准确率平均值为90%,预诊断识别精确率的平均值则可达96.9%。故其性能优于同类文献对比算法,能为基于人工智能的CT影像预诊断技术发展提供一定的理论支撑。 展开更多
关键词 边缘分割 CT影像预诊断 快速区域卷积神经网络 小波域树结构的马尔可夫场模型
在线阅读 下载PDF
基于深度学习与数字孪生技术的建筑钢结构检测方法
7
作者 孙晓强 刘皓宇 +1 位作者 沙奕 张天辉 《中国建设信息化》 2024年第23期58-61,共4页
针对传统建筑钢结构缺陷检测方法效率较低的问题,研究通过特征金字塔网络和逐元素加法对快速区域卷积神经网络进行改进,并将其与数字孪生技术结合,提出了一种基于深度学习与数字孪生技术的建筑钢结构检测方法。结果显示,该方法在不同尺... 针对传统建筑钢结构缺陷检测方法效率较低的问题,研究通过特征金字塔网络和逐元素加法对快速区域卷积神经网络进行改进,并将其与数字孪生技术结合,提出了一种基于深度学习与数字孪生技术的建筑钢结构检测方法。结果显示,该方法在不同尺寸下的检测精度分别为0.78、0.81、0.82,证明了其可靠性较高。表明设计的方法能够准确地识别钢构件缺陷,研究结果可应用于建筑物结构健康监控领域,为钢结构风险预警和维护提供有力的技术支持。 展开更多
关键词 建筑钢结构 缺陷检测 快速区域卷积神经网络 数字孪生技术
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
8
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
基于改进Fast R-CNN的红外图像行人检测研究 被引量:14
9
作者 车凯 向郑涛 +2 位作者 陈宇峰 吕坚 周云 《红外技术》 CSCD 北大核心 2018年第6期578-584,共7页
针对红外图像行人检测任务中行人细节信息少,特征提取计算量大以及易受背景影响等问题,提出了一种改进的Fast R-CNN(快速区域卷积神经网络)红外图像行人检测方法。改进主要涉及两个方面:(1)结合红外图像的特点提出了一种自适应ROI提取算... 针对红外图像行人检测任务中行人细节信息少,特征提取计算量大以及易受背景影响等问题,提出了一种改进的Fast R-CNN(快速区域卷积神经网络)红外图像行人检测方法。改进主要涉及两个方面:(1)结合红外图像的特点提出了一种自适应ROI提取算法,在不影响检测准确率的前提下,降低了ROI数量,使得网络的计算量减小;(2)提出了一种加权锚点框的定位机制,基于3种不同宽高比锚点框的检测置信度进行坐标加权,获得更准确的定位框。实验结果表明,本文提出的改进方法与传统的Haar+LBP+HOG+SVM算法及Fast R-CNN算法相比,红外图像行人检测的准确率从80.3%和91.2%提高到92.3%,检测速度从68 ms/f和25 ms/f提高到12 ms/f,提高了系统的性能。 展开更多
关键词 快速区域卷积神经网络 红外图像 行人检测 自适应ROI提取 加权锚点框
在线阅读 下载PDF
基于深度学习的肺炎图像目标检测 被引量:5
10
作者 何迪 刘立新 +3 位作者 刘玉杰 熊丰 齐美捷 张周锋 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期443-451,共9页
肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑... 肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑的机制准确高效地解释医学图像数据,在肺炎图像检测方面获得了广泛应用。构建了3种基于深度学习的图像目标检测模型,单发多框探测器(SSD)、faster-RCNN和faster-RCNN优化模型,对来自Kaggle数据集的26 684张带标签的肺部X光图像进行研究。原始X光图像经预处理后输入3种深度学习模型,分别对单处和两处病灶区域进行目标检测。随机选取500张测试图像,利用损失函数、分类准确率、回归精度和误检病灶数等指标对各模型的性能进行评估。结果表明,faster-RCNN的性能指标优于SSD;Faster-RCNN优化模型的性能指标均优于其他两种模型,其损失函数值小且可快速达到稳定,平均分类准确率为93.7%,平均回归精度为79.8%,且误检病灶数为0。该方法有助于肺炎的准确识别和诊断。 展开更多
关键词 目标检测 肺炎图像 深度学习 快速区域卷积神经网络(faster-RCNN)模型 单发多框探测器(SSD)模型
在线阅读 下载PDF
基于部件检测与检索的行人精细化分割 被引量:1
11
作者 王枫 厉智 +1 位作者 刘青山 孙玉宝 《电子学报》 EI CAS CSCD 北大核心 2019年第2期502-508,共7页
针对行人图像外观的多样性以及结构、姿态、场景的复杂性,提出一种有效的精细化行人部件分割方法.该方法实现把一幅行人图像分割成不同的语义区域,主要包含三个阶段,前两个阶段单独训练两个Fast R-CNN(Fast Region-based Convolutional ... 针对行人图像外观的多样性以及结构、姿态、场景的复杂性,提出一种有效的精细化行人部件分割方法.该方法实现把一幅行人图像分割成不同的语义区域,主要包含三个阶段,前两个阶段单独训练两个Fast R-CNN(Fast Region-based Convolutional Neural Network,快速区域卷积神经网络)模型,分别用来检测整个人体以及各个部件以获得各类别部件的大体位置;第三个阶段使用基于检索过分割图像的方法来对检测到的各个部件进行分割,最后把各部件分割结果还原到原图坐标上以得到最终的分割结果.实验表明所提方法在三个公开的数据库上,与其他算法相比,分割准确率更高,边缘效果更好. 展开更多
关键词 行人分割 快速区域卷积神经网络 过分割 部件检索
在线阅读 下载PDF
局部自主遥操作中的抓取构型识别研究
12
作者 韩冬 黄攀峰 齐志刚 《载人航天》 CSCD 北大核心 2019年第5期586-593,共8页
针对局部自主遥操作过程中识别目标准确率低的问题,提出了一种基于改进快速区域卷积神经网络的抓取构型识别方法,通过对其区域生成网络中锚点尺度、前景特征区域、候选框的线性回归和分类网络分别进行改进,以提高抓取构型识别的准确率... 针对局部自主遥操作过程中识别目标准确率低的问题,提出了一种基于改进快速区域卷积神经网络的抓取构型识别方法,通过对其区域生成网络中锚点尺度、前景特征区域、候选框的线性回归和分类网络分别进行改进,以提高抓取构型识别的准确率。首先将抓取构型参数化,然后在目标区域中利用锚点法对抓取构型参数进行识别,结合视觉传感器采集到的深度信息确定目标高度,并通过线性回归方法对抓取区域进行修正。通过搭建机器人试验平台,利用Cornell Grasp Dataset进行训练与测试进行验证。试验结果表明,提出的方法在简单网络识别准确率为96.4%,并成功实现机器人对目标的抓取。 展开更多
关键词 局部自主遥操作 目标检测 抓取构型识别 快速区域卷积神经网络
在线阅读 下载PDF
基于Faster R-CNN算法的船舶识别检测 被引量:9
13
作者 崔巍 杨亮亮 +3 位作者 夏荣 牟向伟 樊晓伟 杨海峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第2期182-187,223,共7页
目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,... 目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,用于物体检测和分类时,可以实现高精度实时监测。文章应用Faster R-CNN算法对卫星图像中的船舶进行识别和检测,并与传统尺度不变特征转换(scale-invariant feature transform,SIFT)算法、快速区域卷积神经网络(fast region-based convolutional neural network,Fast R-CNN)算法进行对比。研究结果表明,Faster R-CNN算法比传统SIFT算法和Fast R-CNN算法有更好的收敛速度和识别精度,该算法在船舶识别方面具有较大潜力。 展开更多
关键词 卫星图像 船舶检测 快速的区域卷积神经网络(Faster R-CNN) 尺度不变特征转换(SIFT) 快速区域卷积神经网络(Fast R-CNN)
在线阅读 下载PDF
基于激光雷达和视觉信息融合的车辆识别与跟踪 被引量:25
14
作者 宫铭钱 冀杰 +1 位作者 种一帆 陈琼红 《汽车技术》 CSCD 北大核心 2020年第11期8-15,共8页
为提高自动驾驶系统对车辆目标的识别和跟踪精度,提出一种基于激光雷达和单目视觉的信息融合框架。利用改进的DBSCAN算法对障碍物点云数据进行聚类,采用更快速区域卷积神经网络(Faster R-CNN)识别单目视觉图像中的车辆目标,融合两种传... 为提高自动驾驶系统对车辆目标的识别和跟踪精度,提出一种基于激光雷达和单目视觉的信息融合框架。利用改进的DBSCAN算法对障碍物点云数据进行聚类,采用更快速区域卷积神经网络(Faster R-CNN)识别单目视觉图像中的车辆目标,融合两种传感器的信息获得完整的车辆目标信息,使用联合概率数据关联(JPDA)算法实时跟踪目标车辆的运动状态。试验结果表明,该算法可有效避免传感器杂波的干扰,能够适应车辆目标的数量变化并及时更新航迹信息,具有较高的精度和鲁棒性。 展开更多
关键词 激光雷达 视觉 信息融合 DBSCAN 快速区域卷积神经网络 联合概率数据关联
在线阅读 下载PDF
基于Faster-RCNN的IR-UWB穿墙雷达邻近多目标检测算法 被引量:1
15
作者 赵思肖 梁步阁 +1 位作者 杨德贵 熊明耀 《无线电工程》 北大核心 2023年第1期80-86,共7页
针对超宽带冲激脉冲(Ultra-wideband Impulse Radio, IR-UWB)穿墙雷达邻近多目标精确检测难点,提出了一种基于Faster-RCNN的IR-UWB穿墙雷达邻近多目标检测算法。算法采用自适应预处理算法对雷达回波进行处理,凸显疑似目标图像域特征;采... 针对超宽带冲激脉冲(Ultra-wideband Impulse Radio, IR-UWB)穿墙雷达邻近多目标精确检测难点,提出了一种基于Faster-RCNN的IR-UWB穿墙雷达邻近多目标检测算法。算法采用自适应预处理算法对雷达回波进行处理,凸显疑似目标图像域特征;采用Faster-RCNN网络对不同目标距离间隔下的邻近多目标进行分离检测;利用穿墙雷达实测数据与传统的恒虚警率(Constant False-Alarm Rate, CFAR)检测方法进行对比试验,结果表明该算法明显优于传统方法。 展开更多
关键词 超宽带 穿墙雷达 深度学习 多目标检测 快速区域卷积神经网络
在线阅读 下载PDF
基于深度学习的发动机叶片故障检测技术 被引量:8
16
作者 张静 农昌瑞 +1 位作者 张海兵 张亚周 《航空发动机》 北大核心 2022年第1期68-75,共8页
为了解决航空发动机叶片故障检测中存在的检测精度欠佳、检测效率不高的问题,提出了一种基于深度学习的目标检测方法。针对小样本数据集检测精度低、模型训练速度慢等问题,对Faster R-CNN目标检测算法进行结构优化,引入Res2Net结构,通... 为了解决航空发动机叶片故障检测中存在的检测精度欠佳、检测效率不高的问题,提出了一种基于深度学习的目标检测方法。针对小样本数据集检测精度低、模型训练速度慢等问题,对Faster R-CNN目标检测算法进行结构优化,引入Res2Net结构,通过分割串联的策略强化残差模块的卷积学习能力,搭建了细粒级的多尺度残差模型Res2Net-50,以提升模型的特征提取能力。同时,在网络的训练过程中,采用多次余弦退火衰减法对学习率进行调整,以加快模型的训练速度,提升模型的训练质量。针对航空发动机叶片裂纹和缺损2种故障类型进行网络训练与检测试验,试验结果表明:优化后的模型识别准确率提高了0.7%,模型的平均检测精度提高了1.8%,训练时间缩短了5.56%,取得了比较好的检测效果。 展开更多
关键词 故障检测 叶片 深度学习 快速区域卷积神经网络 残差网络 航空发动机
在线阅读 下载PDF
一种基于改进Faster RCNN的易拉罐印刷缺陷检测方法 被引量:2
17
作者 梁承权 吕德深 陆晓 《印刷与数字媒体技术研究》 CAS 北大核心 2023年第6期22-29,共8页
针对现有易拉罐印刷缺陷检测方法对小尺度缺陷检测难、漏检率高、检测精度低等问题,本研究提出一种基于改进Faster RCNN的易拉罐印刷缺陷检测方法。首先,以Faster RCNN的检测框架为基础,选取改进的VGG16模型作为特征提取网络,提取出卷... 针对现有易拉罐印刷缺陷检测方法对小尺度缺陷检测难、漏检率高、检测精度低等问题,本研究提出一种基于改进Faster RCNN的易拉罐印刷缺陷检测方法。首先,以Faster RCNN的检测框架为基础,选取改进的VGG16模型作为特征提取网络,提取出卷积特征图;其次,针对缺陷目标的小尺度结构特点,通过改进RPN网络生成更具表征能力的缺陷目标候选框;最后,对缺陷目标候选区域进行分析,通过数学形态算法将缺陷目标从背景中分割出来,实现对目标区域的缺陷识别和形态提取。实验结果表明,本研究检测方法可准确且完整地提取缺陷目标,在易拉罐罐体印刷缺陷数据集上平均准确率达到94.78%,与现有的目标缺陷检测算法相比,识别性能更优、智能化程度更高,对提升易拉罐智能化生产具有现实意义。 展开更多
关键词 印刷品 缺陷检测 快速区域卷积神经网络 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部