加速动态时间规整(fastDTW)算法在测井曲线相似性度量过程中存在异常点问题,且难以确定搜索边界。针对上述问题,本文首先将fastDTW算法与SDTW(summation dynamic time warping)算法结合,得到fastSDTW算法,通过重构测井曲线综合时间序列...加速动态时间规整(fastDTW)算法在测井曲线相似性度量过程中存在异常点问题,且难以确定搜索边界。针对上述问题,本文首先将fastDTW算法与SDTW(summation dynamic time warping)算法结合,得到fastSDTW算法,通过重构测井曲线综合时间序列梯度信息和数值信息解决异常点问题。然后,结合井轨迹资料提出自适应搜索边界,并基于该边界,应用fastSDTW算法进行斜井和水平井测井曲线相似性度量。结果表明,基于自适应搜索边界的fastSDTW算法的精度更高,时间复杂度为O(N),确保了算法的运行速度。最后,将该算法应用到水淹层识别工作中,通过邻井对比的方式识别水淹层,取得了预期的应用效果。展开更多
针对现有人体步态身份识别算法单一、准确率较低的问题,提出了一种基于多尺度熵和动态时间规整(DTW,dynamic time warping)的人体步态身份识别方法。采用自制的APP软件在较低采样率下采集人体步行加速度数据,实验中共采集50名志愿者的...针对现有人体步态身份识别算法单一、准确率较低的问题,提出了一种基于多尺度熵和动态时间规整(DTW,dynamic time warping)的人体步态身份识别方法。采用自制的APP软件在较低采样率下采集人体步行加速度数据,实验中共采集50名志愿者的正常行走加速度数据,使用多尺度熵算法进行数据处理,得到在各个尺度下的熵值,最后采用DTW算法对多尺度熵值进行特征匹配,得到的相对错误率(EER,equal error rate)为13.7%,仿真结果表明基于多尺度熵和DTW算法相结合的方法较好提高了身份识别的准确率,为人体步态身份识别提供了一个新的思路。展开更多
为了从具有周期性的纱线毛羽H值数据中提取有代表性的毛羽H值周期模式(即周期时间或周期数据长度上毛羽数据的变化),使用动态时间规整(dynamic time warping,DTW)算法识别毛羽H值的周期模式,同时使用局部暴力搜索和剪枝算法对DTW算法进...为了从具有周期性的纱线毛羽H值数据中提取有代表性的毛羽H值周期模式(即周期时间或周期数据长度上毛羽数据的变化),使用动态时间规整(dynamic time warping,DTW)算法识别毛羽H值的周期模式,同时使用局部暴力搜索和剪枝算法对DTW算法进行优化。从14台细纱机上采集棉纺与混纺纱试样,利用乌斯特条干仪测得的毛羽H值计算理论周期及任意两周期模式间的DTW距离。结果表明:当DTW距离矩阵中出现显著不同于其他周期模式的现象时,该设备可能存在异常或故障;在设定的试验条件下,不同品种纱线的理论周期和实际周期存在差异,平均相差0.48 m,由此可根据实际周期反向推导纱线每分钟的实际卷绕长度。展开更多
文摘加速动态时间规整(fastDTW)算法在测井曲线相似性度量过程中存在异常点问题,且难以确定搜索边界。针对上述问题,本文首先将fastDTW算法与SDTW(summation dynamic time warping)算法结合,得到fastSDTW算法,通过重构测井曲线综合时间序列梯度信息和数值信息解决异常点问题。然后,结合井轨迹资料提出自适应搜索边界,并基于该边界,应用fastSDTW算法进行斜井和水平井测井曲线相似性度量。结果表明,基于自适应搜索边界的fastSDTW算法的精度更高,时间复杂度为O(N),确保了算法的运行速度。最后,将该算法应用到水淹层识别工作中,通过邻井对比的方式识别水淹层,取得了预期的应用效果。
文摘针对现有人体步态身份识别算法单一、准确率较低的问题,提出了一种基于多尺度熵和动态时间规整(DTW,dynamic time warping)的人体步态身份识别方法。采用自制的APP软件在较低采样率下采集人体步行加速度数据,实验中共采集50名志愿者的正常行走加速度数据,使用多尺度熵算法进行数据处理,得到在各个尺度下的熵值,最后采用DTW算法对多尺度熵值进行特征匹配,得到的相对错误率(EER,equal error rate)为13.7%,仿真结果表明基于多尺度熵和DTW算法相结合的方法较好提高了身份识别的准确率,为人体步态身份识别提供了一个新的思路。
文摘为了从具有周期性的纱线毛羽H值数据中提取有代表性的毛羽H值周期模式(即周期时间或周期数据长度上毛羽数据的变化),使用动态时间规整(dynamic time warping,DTW)算法识别毛羽H值的周期模式,同时使用局部暴力搜索和剪枝算法对DTW算法进行优化。从14台细纱机上采集棉纺与混纺纱试样,利用乌斯特条干仪测得的毛羽H值计算理论周期及任意两周期模式间的DTW距离。结果表明:当DTW距离矩阵中出现显著不同于其他周期模式的现象时,该设备可能存在异常或故障;在设定的试验条件下,不同品种纱线的理论周期和实际周期存在差异,平均相差0.48 m,由此可根据实际周期反向推导纱线每分钟的实际卷绕长度。