期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种改进的全局K-均值聚类算法 被引量:48
1
作者 谢娟英 蒋帅 +2 位作者 王春霞 张琰 谢维信 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期18-22,共5页
将快速K中心点聚类算法确定初始中心点的思想应用于全局K-均值聚类算法,对其选取下一个簇的最佳初始中心的方法进行改进,提出选取下一个簇的最佳初始中心的一种新方法.该新方法选择一个周围样本分布相对密集,且距离现有簇的中心比较远... 将快速K中心点聚类算法确定初始中心点的思想应用于全局K-均值聚类算法,对其选取下一个簇的最佳初始中心的方法进行改进,提出选取下一个簇的最佳初始中心的一种新方法.该新方法选择一个周围样本分布相对密集,且距离现有簇的中心比较远的样本为下一个簇的最佳初始中心,得到一种改进的全局K-均值聚类算法.改进后的算法不仅可以避免将噪音点作为下一个簇的最佳初始中心点,而且在不影响聚类效果的基础上缩短了聚类时间.通过UCI机器学习数据库数据以及随机生成的人工模拟数据实验测试,证明改进的全局K-均值聚类算法与全局K-均值聚类算法及快速全局K-均值聚类算法相比在聚类时间上更优越. 展开更多
关键词 k-均值 全局k-均值 快速全局k-均值 K中心点法
在线阅读 下载PDF
基于改进的子类判决分析的SAR目标特征提取与识别 被引量:4
2
作者 胡利平 刘宏伟 吴顺君 《电子与信息学报》 EI CSCD 北大核心 2009年第9期2264-2268,共5页
针对大多文献中假设合成孔径雷达(SAR)数据服从单模分布带来的问题,该文提出改进的子类判决分析(ICDA),它假设SAR目标数据服从更合理更实际的多模分布。首先采用快速全局k-均值聚类算法找到每类目标的子类划分,然后基于子类判决分析(CDA... 针对大多文献中假设合成孔径雷达(SAR)数据服从单模分布带来的问题,该文提出改进的子类判决分析(ICDA),它假设SAR目标数据服从更合理更实际的多模分布。首先采用快速全局k-均值聚类算法找到每类目标的子类划分,然后基于子类判决分析(CDA)准则寻找最优的投影矢量,使得投影后不同类别的子类样本之间距离最大而每个子类内部的样本散布最小。用美国运动和静止目标获取与识别(MSTAR)计划录取的SAR地面静止目标数据的实验结果表明,ICDA可获得较好的对真实目标的分类性能和对干扰目标的拒判能力。 展开更多
关键词 合成孔径雷达 自动目标识别 子类判决分析 快速全局k-均值聚类算法
在线阅读 下载PDF
改进的核子类判决分析 被引量:1
3
作者 胡利平 殷红成 +1 位作者 陈渤 周平 《系统工程与电子技术》 EI CSCD 北大核心 2011年第5期1176-1181,共6页
提出了改进的核子类判决分析(improvcd kernel clustering-based discriminant analysis,IKCDA)方法,首先采用快速全局核k-均值聚类算法找到每类目标的最优子类划分,然后基于找到的子类划分结果采用核子类判决分析求取最优的投影矢量。... 提出了改进的核子类判决分析(improvcd kernel clustering-based discriminant analysis,IKCDA)方法,首先采用快速全局核k-均值聚类算法找到每类目标的最优子类划分,然后基于找到的子类划分结果采用核子类判决分析求取最优的投影矢量。基于UCI机器学习数据库的实验结果表明,经过IKCDA特征提取后异类样本间的可分性明显改善了。此外,基于美国运动和静止目标获取与识别(moving and stationary target acquisitionand recognition,MSTAR)计划录取的合成孔径雷达地面静止目标数据的实验结果表明,经过IKCDA后可以改善对真实目标的分类性能和对干扰目标的拒判能力。 展开更多
关键词 核方法 线性判决分析 核子类判决分析 快速全局k-均值聚类算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部