期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于规则判别的末端配送停留点识别与出行链特征
1
作者 姜晓红 陈庆炜 +2 位作者 严亚丹 韩兵 李家伟 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第6期232-241,共10页
响应需求的末端配送方案可显著提升顾客满意度,识别并提取末端配送快递三轮车配送停留点特征是分析配送时空分布和动态需求的基础。因此,本文提出结合兴趣点(POI)与停留时长规则的停留点识别方法。首先,利用POI信息和瞬时速度初步筛选... 响应需求的末端配送方案可显著提升顾客满意度,识别并提取末端配送快递三轮车配送停留点特征是分析配送时空分布和动态需求的基础。因此,本文提出结合兴趣点(POI)与停留时长规则的停留点识别方法。首先,利用POI信息和瞬时速度初步筛选快递三轮车轨迹数据;然后,引入停留时长阈值作为二次筛选条件;最后,合并临近的聚集点,形成完整的停留点集。采用人工校验识别结果的准确性,并借助熵率法计算停留链的熵率,量化评估不同识别方法的精确度。以苏州市顺丰速运快递网点的快递三轮车配送轨迹数据为实证对象,将所提出的方法与货运卡车停留点识别中常用的基于密度的聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)进行对比分析。结果表明,DBSCAN算法易将交通信号灯等待误判为配送停留点,而本文所提出的方法则有效规避了该问题,实现高达98%的精确率和召回率;同时,熵率法的应用进一步验证了所提方法在准确率上的有效性。在此基础上,扩大研究范围并识别配送停留点后,分析快递三轮车的出行链与配送时空分布特征。结果表明,8:00左右的高峰期配送车辆数显著多于16:00左右的高峰期;住宅区为配送热点,车辆数最多,且出行距离和工作时长最长;酒店类配送呈现停留时长较短的特点;此外,停留点空间分布亦揭示了部分配送距离偏远的情况。 展开更多
关键词 综合运输 货物运输组织 停留点识别 规则判别 快递三轮车 末端配送 出行链特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部