期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
CT重建算法对基于深度学习非门控冠脉钙化积分模型评价心血管风险分层的影响
被引量:
1
1
作者
孙安
朱一白
+2 位作者
史亮
萧毅
刘士远
《放射学实践》
CSCD
北大核心
2023年第4期419-425,共7页
目的:以门控CT为标准,探讨基于深度学习的非门控冠状动脉钙化积分(DL-CACS)模型在不同CT重建算法下对心血管风险分类效能。方法:回顾性将在本院同时接受门控心脏CT和非门控低剂量胸部CT(LDCT)检查的549例患者纳入本研究。根据扫描方式(...
目的:以门控CT为标准,探讨基于深度学习的非门控冠状动脉钙化积分(DL-CACS)模型在不同CT重建算法下对心血管风险分类效能。方法:回顾性将在本院同时接受门控心脏CT和非门控低剂量胸部CT(LDCT)检查的549例患者纳入本研究。根据扫描方式(心电门控和非门控),将所有患者的图像资料分为A、B两组。对B组图像数据分别使用smooth、standard及sharp算法进行重建(作为B1、B2和B3组),并导入DL-CACS模型进行分析,获得CACS及心血管风险分类结果。以医师基于A组图像手工测量的CACS为标准,采用符合率、Bland-Altman法及组内相关系数(ICC)对3种CT重建算法下获得的DL-CACS进行分析。依据CACS(0、1~99、100~400和>400)将患者的心血管风险分为4个标准类别(1~4类,分别对应无、低、中和高风险),利用Kappa检验、受试者工作特征(ROC)曲线下面积(AUC)比较不同重建算法下DL-CACS与标准CACS对患者心血管风险分层的差异。结果:B1、B2和B3组的DL-CACS与A组之间的一致性均较好,其中以B1组最好[ICC=0.955(95%CI:0.947~0.962)]。B1、B2和B3组中模型所获得的心血管风险分层与A组之间的一致性均较好,Kappa值分别为0.839、0.827和0.770(P均<0.001),其中B1组评估高危患者的AUC最高(AUC=0.995,P<0.001)。Bland-Altman图(A组分别与B1、B2和B3组的CACS进行配对比较)显示,B1组与A组之间CACS平均差值为-0.173(95%CI:-1.748~1.402),B1组CACS超出95%一致性界限的患者数最少。结论:非门控DL-CACS模型在不同CT重建算法下均能准确地评估CACS及风险分层,而在LDCT时选择smooth重建算法,能最大程度地提高对冠脉钙化程度的评估准确性。
展开更多
关键词
冠状动脉钙化
体层摄影术
X线计算机
深度学习
心血管风险分层
在线阅读
下载PDF
职称材料
题名
CT重建算法对基于深度学习非门控冠脉钙化积分模型评价心血管风险分层的影响
被引量:
1
1
作者
孙安
朱一白
史亮
萧毅
刘士远
机构
海军军医大学长征医院影像科
海军军医大学东方肝胆医院医疗保障中心医学工程科
数坤(北京)网络科技有限公司
出处
《放射学实践》
CSCD
北大核心
2023年第4期419-425,共7页
基金
国家自然科学基金面上项目(82271994)
国家自然科学基金面上项目(81871405)
+3 种基金
申康能力提升项目(SHDC22022310-B)
军委面上项目(22BJZ07)
国家卫生健康委放射影像数据库建设项目(YXFSC2022JJSJ010)
上海长征医院青年启动基金(2022QN091)。
文摘
目的:以门控CT为标准,探讨基于深度学习的非门控冠状动脉钙化积分(DL-CACS)模型在不同CT重建算法下对心血管风险分类效能。方法:回顾性将在本院同时接受门控心脏CT和非门控低剂量胸部CT(LDCT)检查的549例患者纳入本研究。根据扫描方式(心电门控和非门控),将所有患者的图像资料分为A、B两组。对B组图像数据分别使用smooth、standard及sharp算法进行重建(作为B1、B2和B3组),并导入DL-CACS模型进行分析,获得CACS及心血管风险分类结果。以医师基于A组图像手工测量的CACS为标准,采用符合率、Bland-Altman法及组内相关系数(ICC)对3种CT重建算法下获得的DL-CACS进行分析。依据CACS(0、1~99、100~400和>400)将患者的心血管风险分为4个标准类别(1~4类,分别对应无、低、中和高风险),利用Kappa检验、受试者工作特征(ROC)曲线下面积(AUC)比较不同重建算法下DL-CACS与标准CACS对患者心血管风险分层的差异。结果:B1、B2和B3组的DL-CACS与A组之间的一致性均较好,其中以B1组最好[ICC=0.955(95%CI:0.947~0.962)]。B1、B2和B3组中模型所获得的心血管风险分层与A组之间的一致性均较好,Kappa值分别为0.839、0.827和0.770(P均<0.001),其中B1组评估高危患者的AUC最高(AUC=0.995,P<0.001)。Bland-Altman图(A组分别与B1、B2和B3组的CACS进行配对比较)显示,B1组与A组之间CACS平均差值为-0.173(95%CI:-1.748~1.402),B1组CACS超出95%一致性界限的患者数最少。结论:非门控DL-CACS模型在不同CT重建算法下均能准确地评估CACS及风险分层,而在LDCT时选择smooth重建算法,能最大程度地提高对冠脉钙化程度的评估准确性。
关键词
冠状动脉钙化
体层摄影术
X线计算机
深度学习
心血管风险分层
Keywords
Coronary artery calcification
Tomography,X-ray computed
Deep learning
Cardiovascular risk classification
分类号
R814.42 [医药卫生—影像医学与核医学]
R543.3 [医药卫生—心血管疾病]
R541.4 [医药卫生—心血管疾病]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
CT重建算法对基于深度学习非门控冠脉钙化积分模型评价心血管风险分层的影响
孙安
朱一白
史亮
萧毅
刘士远
《放射学实践》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部