期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度注意力和不确定性损失的两阶段左心房疤痕分割
1
作者 张鑫艳 唐振超 +1 位作者 李一夫 刘振宇 《计算机科学》 北大核心 2025年第6期264-273,共10页
心房颤动(AF)是临床上最常见的心律失常之一。左心房及其心肌梗死后疤痕区域的准确分割和面积评估,对于心肌梗死患者出现AF的早期诊断、治疗规划以及预后评估具有极其重要的临床意义。深度学习方法是进行左心房及其心肌梗死后疤痕区域... 心房颤动(AF)是临床上最常见的心律失常之一。左心房及其心肌梗死后疤痕区域的准确分割和面积评估,对于心肌梗死患者出现AF的早期诊断、治疗规划以及预后评估具有极其重要的临床意义。深度学习方法是进行左心房及其心肌梗死后疤痕区域自动分割的主流方向。但是由于心肌梗死后疤痕体积小且容易受到周围增强组织的影响,分割精度尚有待提高。为此,提出了一种基于多尺度注意力和不确定性损失的两阶段深度学习模型。一方面,在网络上采样之前引入多尺度注意力模块(MSAM),该模块能够编码丰富的多尺度语义信息并让模型更为关注重要的语义信息及空间信息。另一方面,引入不确定性损失(Uncertainty Loss)以增强模型对疤痕不确定性的建模能力。此外,还采用直方图匹配(HM)增强图像质量,提高网络的分割能力。将所提出的方法在验证集以及左心房和疤痕量化与分割挑战赛(LAScarQS++)验证平台上进行验证,实验结果均表明该方法分割的疤痕更加完整,分割精度也得到了提升。与nnU-Net相比,心肌梗死后疤痕分割骰子系数(Dice)提高了8.12%。 展开更多
关键词 心肌梗死后疤痕 深度学习 图像分割 不确定性损失 nnU-Net 多尺度注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部