期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
遥感卫星视轴指向在轨测量数据去噪处理方法与BiLSTM-CNN算法实现
1
作者 高宇 张旭 +2 位作者 李红 庄炜 祝连庆 《仪器仪表学报》 2025年第6期330-337,共8页
针对遥感卫星视轴指向微角度测量系统在在轨运行过程中受到复杂扰动环境影响和噪声干扰的问题,提出一种融合双向长短期记忆网络(BiLSTM)与卷积神经网络(CNN)的视轴指向在轨测量数据去噪方法,以提升测量数据的精度与可靠性。该方法首先... 针对遥感卫星视轴指向微角度测量系统在在轨运行过程中受到复杂扰动环境影响和噪声干扰的问题,提出一种融合双向长短期记忆网络(BiLSTM)与卷积神经网络(CNN)的视轴指向在轨测量数据去噪方法,以提升测量数据的精度与可靠性。该方法首先结合微角度测量物理建模与蒙特卡洛仿真,对测量数据中噪声的分布特性与时空关联性进行系统性分析与验证。在此基础上,利用现有在轨测量数据构建高质量标注样本集,保障模型训练的准确性与泛化能力。所提出的BiLSTM-CNN网络架构中,BiLSTM用于捕捉测量序列中的双向时序依赖关系,CNN用于提取局部空间特征;同时引入梯度平衡机制以缓解训练过程中可能出现的梯度消失与过拟合问题,从而提升模型在复杂输入下的稳定性与鲁棒性。实验在多个典型神经网络模型上开展对比评估,结果表明:在a 1轴向测量数据中,所提模型在均方误差(MSE)、均方根误差(RMSE)及平均绝对误差(MAE)指标上分别较表现最好的BiLSTM模型降低7.9%、4.3%和16.4%;在b1轴向中,分别较表现最好的GRU模型分别降低4.6%、2.3%和6.4%。上述结果充分验证了本方法在多轴向测量数据处理中的稳健性与普适性,具备优异的噪声识别与抑制能力,为高精度遥感姿态测量任务提供了有效的数据处理手段,具有良好的工程实用价值和应用前景。 展开更多
关键词 微角度测量系统 双向长短期记忆网络 卷积神经网络 去噪算法 蒙特卡罗分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部