Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roa...Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.展开更多
Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
Based on the microscopic phase-field dynamic model and the microelasticity theory,the coarsening behavior of L12 and DO22 phases in Ni75CrxAl25-x alloy was simulated.The results show that the initial irregular shaped,...Based on the microscopic phase-field dynamic model and the microelasticity theory,the coarsening behavior of L12 and DO22 phases in Ni75CrxAl25-x alloy was simulated.The results show that the initial irregular shaped,randomly distributed L12 and DO22 phases are gradually transformed into cuboidal shape with round corner,regularly aligned along directions[100]and[001],and highly preferential selected microstructure is formed during the later stage of precipitation.The elastic field produced by the lattice mismatch between the coherent precipitates and the matrix has a strong influence on the coarsening kinetics,and there is no linear relationship between the cube of the average size of precipitates and the aging time,which does not agree with the results predicted by the classical Lifshitz-Slyozov-Wagner.The coarsening processes of L12 and DO22 phases are retarded in elastically constrained system.In the concurrent system of L12 and DO22 phases,there are two types of coarsening modes:the migration of antiphase domain boundaries and the interphase Ostwald ripening.展开更多
基金Projects(51874071,51734005,52104257)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
基金Project(50671084)supported by the National Natural Science Foundation of ChinaProject(20070420218)supported by ChinaPostdoctoral Science Foundation
文摘Based on the microscopic phase-field dynamic model and the microelasticity theory,the coarsening behavior of L12 and DO22 phases in Ni75CrxAl25-x alloy was simulated.The results show that the initial irregular shaped,randomly distributed L12 and DO22 phases are gradually transformed into cuboidal shape with round corner,regularly aligned along directions[100]and[001],and highly preferential selected microstructure is formed during the later stage of precipitation.The elastic field produced by the lattice mismatch between the coherent precipitates and the matrix has a strong influence on the coarsening kinetics,and there is no linear relationship between the cube of the average size of precipitates and the aging time,which does not agree with the results predicted by the classical Lifshitz-Slyozov-Wagner.The coarsening processes of L12 and DO22 phases are retarded in elastically constrained system.In the concurrent system of L12 and DO22 phases,there are two types of coarsening modes:the migration of antiphase domain boundaries and the interphase Ostwald ripening.