期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
新型C/C-TaC复合材料的微观结构及其力学性能 被引量:6
1
作者 王雅雷 熊翔 +2 位作者 李国栋 肖鹏 陈招科 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第4期608-613,共6页
采用化学气相渗透(CVI)法和热固性树脂浸渍-炭化法复合工艺制备含5%TaC的新型C/C-TaC复合材料,并对复合材料的微观结构和力学性能进行了研究。结果表明:C/C-TaC复合材料中TaC以涂层形式均匀致密地包覆在炭纤维周围,形成管状微观结构,大... 采用化学气相渗透(CVI)法和热固性树脂浸渍-炭化法复合工艺制备含5%TaC的新型C/C-TaC复合材料,并对复合材料的微观结构和力学性能进行了研究。结果表明:C/C-TaC复合材料中TaC以涂层形式均匀致密地包覆在炭纤维周围,形成管状微观结构,大大提高C/C-TaC复合材料试样的平均强度和韧性。复合材料试样平均抗弯强度达到270 MPa,比C/C复合材料的提高近70%;最大断裂位移达到1.2 mm,比C/C复合材料的提高近140%,表现为良好的假塑性断裂。 展开更多
关键词 C/C-TaC复合材料:微观结构 抗弯强度:增强增韧
在线阅读 下载PDF
铝/钛/铝三层复合板热轧工艺及微观组织研究 被引量:12
2
作者 陈泽军 陈全忠 +1 位作者 黄光杰 刘雪峰 《材料导报》 EI CAS CSCD 北大核心 2012年第6期106-109,共4页
钛/铝层状复合材料具有两种材料优异的特性,能够满足一些特殊工程需要。开发了热轧复合技术,成功制备了铝(1100)/钛(TA2)/铝(1100)三层复合板。研究了复合板轧制过程中的关键轧制技术参数(临界压下率和轧制复合工艺条件)。利用光学显微... 钛/铝层状复合材料具有两种材料优异的特性,能够满足一些特殊工程需要。开发了热轧复合技术,成功制备了铝(1100)/钛(TA2)/铝(1100)三层复合板。研究了复合板轧制过程中的关键轧制技术参数(临界压下率和轧制复合工艺条件)。利用光学显微镜和SEM观察了钛/铝复合板及结合界面形貌,分析了不同退火温度对复合板力学性能的影响。基于实验结果,描述了影响复合板质量和有助于提高复合板结合强度的关键工艺过程。 展开更多
关键词 复合板热轧微观结构结合界面退火
在线阅读 下载PDF
机械高稳态超疏水表面的研究进展 被引量:5
3
作者 青勇权 安恺 +3 位作者 朱鹏 龙猜 商硕 刘常升 《表面技术》 EI CAS CSCD 北大核心 2021年第1期1-9,共9页
超疏水表面因其具有低粘附和排斥水的特性,广泛应用于冷凝传热、抗结冰、减阻、防腐蚀、油水分离及自清洁等众多领域,具有极其重要的应用前景。然而,超疏水表面在机械作用下容易造成超疏水性部分或全部丧失,限制其实际应用,故关于该表... 超疏水表面因其具有低粘附和排斥水的特性,广泛应用于冷凝传热、抗结冰、减阻、防腐蚀、油水分离及自清洁等众多领域,具有极其重要的应用前景。然而,超疏水表面在机械作用下容易造成超疏水性部分或全部丧失,限制其实际应用,故关于该表面机械稳态性问题研究的重要性凸显。综述了超疏水表面在机械作用下的失稳机制和稳态性评价方式,根据超疏水表面的微纳米结构和低表面能物质失效差异,将机械高稳态超疏水表面的实现策略归纳为三类:构筑自修复性表面,利用涂层中的自修复性分子对表面的疏水物质缺失或结构损伤进行自我补足;构筑微观复合结构表面,选择双尺度(大尺度-微米/小尺度-纳米)或全疏单级(或多级)尺度的结构抵御机械破坏;构筑多组分协同增强表面,通过化学键或范德华力作用,改善涂层的固有强度或提高涂层与基底的结合强度。这三类策略均具有一定的局限性,如何实现超疏水表面大规模工业应用仍是一个科学难题,并展望了其未来的发展方向。 展开更多
关键词 超疏水 机械稳态性 低表面能物质 自修复 微观复合结构 协同增强
在线阅读 下载PDF
Microstructure of aluminum/copper clad composite fabricated by casting-cold extrusion forming 被引量:7
4
作者 骆俊廷 赵双敬 张春祥 《Journal of Central South University》 SCIE EI CAS 2011年第4期1013-1017,共5页
An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface ar... An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface. 展开更多
关键词 aluminum/copper clad composite CASTING cold extrusion MICROSTRUCTURE
在线阅读 下载PDF
Effect of annealing on microstructure and properties of Si_3N_4-AlN composite ceramics 被引量:2
5
作者 徐鹏 杨建 +1 位作者 丘泰 陈兴 《Journal of Central South University》 SCIE EI CAS 2011年第4期960-965,共6页
Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive wer... Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3. 展开更多
关键词 Si3N4-A1N composite ANNEALING La203 bending strength thermal conductivity dielectric loss
在线阅读 下载PDF
Microstructure and thermal conductivity of carbon/carbon composites made with different kinds of carbon fibers 被引量:2
6
作者 陈洁 龙莹 +1 位作者 熊翔 肖鹏 《Journal of Central South University》 SCIE EI CAS 2012年第7期1780-1784,共5页
The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal condu... The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity. 展开更多
关键词 carbon fiber thermal conductivity PYROCARBON
在线阅读 下载PDF
Microstructure and abrasive wear behaviour of anodizing composite films containing Si C nanoparticles on Ti6Al4V alloy 被引量:6
7
作者 李松梅 郁秀梅 +3 位作者 刘建华 于美 吴量 杨康 《Journal of Central South University》 SCIE EI CAS 2014年第12期4415-4423,共9页
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ... Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed. 展开更多
关键词 Ti6Al4V alloy anodic oxidation Si C nanoparticle composite film
在线阅读 下载PDF
Progressive failure analysis of composite structure based on micro- and macro-mechanics models 被引量:1
8
作者 孙志刚 阮绍明 +1 位作者 陈磊 宋迎东 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2980-2988,共9页
Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stre... Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stress distribution of the composite structure is calculated by commercial finite element software. According to the macro-stress, the damaged point is found and the micro-stress distribution of representative volume element is calculated by finite-volume direct averaging micromechanics(FVDAM). Compared with the results calculated by failure criterion based on macro-stress field(the maximum stress criteria and Hashin criteria) and micro-stress field(Huang model), it is proven that the failure analysis based on macro- and micro-mechanics model is feasible and efficient. 展开更多
关键词 composite progressive analysis finite-volume direct averaging micromechanics (FVDAM) failure criteria
在线阅读 下载PDF
Microstructure and properties of electronic packaging shell with high silicon carbide aluminum-base composites by semi-solid thixoforming
9
作者 郭明海 刘俊友 +2 位作者 贾成厂 贾琪瑾 果世驹 《Journal of Central South University》 SCIE EI CAS 2014年第11期4053-4058,共6页
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of... The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution. 展开更多
关键词 high silicon carbide aluminum-base composites electronic packaging semi-solid thixoforming thermal conductivity coefficient of thermal expansion
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部