期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向混合数据的对称邻域和微簇合并密度峰值聚类算法
1
作者 陈威 吕莉 +2 位作者 肖人彬 谭德坤 潘正祥 《智能系统学报》 北大核心 2025年第1期172-184,共13页
混合数据是指包含密度分布不均和流形特征的数据集。密度峰值聚类算法局部密度定义方式易忽略密度分布不均数据集类簇间样本的疏密差异,导致误选聚类中心;分配策略依据欧氏距离进行样本分配,不适用于流形数据集同一类簇样本相距较远的情... 混合数据是指包含密度分布不均和流形特征的数据集。密度峰值聚类算法局部密度定义方式易忽略密度分布不均数据集类簇间样本的疏密差异,导致误选聚类中心;分配策略依据欧氏距离进行样本分配,不适用于流形数据集同一类簇样本相距较远的情况,致使样本被错误分配。针对这些问题,本文提出一种面向混合数据的对称邻域和微簇合并密度峰值聚类算法。该算法引入对称邻域概念,采用对数倒数累加方法重新定义局部密度,有效提升了聚类中心的识别度;同时,提出了一种基于密度差的微簇个数选取方法,使微簇个数的选取处于合理范围;此外,设计了一种微簇间相似性度量方法进行微簇合并,避免了分配时产生的连带错误。实验表明,相较于对比算法,本文算法在混合数据集、UCI数据集和图像数据集上均取得较好的聚类效果。 展开更多
关键词 密度峰值聚类 密度分布不均 流形数据 K近邻 逆近邻 对称邻域 微簇间相似性 合并
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部