期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于HLS-SVDR和SPPCS的CEEMD的滚动轴承微故障特征提取 被引量:3
1
作者 徐波 周凤星 +2 位作者 马娅婕 严保康 黎会鹏 《振动.测试与诊断》 EI CSCD 北大核心 2019年第1期136-146,226-227,共12页
针对互补集总经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)在处理非平稳随机信号时能够有效地消除模态混叠,却仍然存在包络拟合过冲/欠冲和端点效应问题,提出了同伦-最小二乘支持向量双回归(homotopy ... 针对互补集总经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)在处理非平稳随机信号时能够有效地消除模态混叠,却仍然存在包络拟合过冲/欠冲和端点效应问题,提出了同伦-最小二乘支持向量双回归(homotopy least squares-support vector double regression,简称HLS-SVDR)的保形分段三次样条(shape-preserving piecewise cubic spline,简称SPPCS)的完备CEEMD改进方法。首先,使用SPPCS插值法消除在构造上、下包络曲线过程中产生的拟合过冲/欠冲问题,获得有效的包络线;其次,使用HLS-SVDR对各层信号极值点的包络均值曲线两端进行左、右预测覆盖以抑制端点效应;最后,将该方法用于滚动轴承的微故障特征提取的实例分析中。实验结果表明,该方法能够更有效地提取滚动轴承微故障特征,实现了一种既保持CEEMD原有特性,同时又能够抑制过冲/欠冲和端点效应的完备CEEMD算法。 展开更多
关键词 完备互补集总经验模态分解 过冲/欠冲 端点效应 保形分段三次样条 同伦-最小二乘支持向量双回归 微故障特征提取
在线阅读 下载PDF
基于自适应CEEMD的非平稳信号分析方法 被引量:8
2
作者 徐波 黎会鹏 +3 位作者 周凤星 严保康 严丹 刘毅 《振动.测试与诊断》 EI CSCD 北大核心 2020年第1期54-61,203,共9页
由于标准的互补集总经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)在处理模态混叠问题时缺乏自适应性,其本质是分解信号获得的本征模态函数(intrinsic mode function,简称IMF)之间产生了一定的信息耦... 由于标准的互补集总经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)在处理模态混叠问题时缺乏自适应性,其本质是分解信号获得的本征模态函数(intrinsic mode function,简称IMF)之间产生了一定的信息耦合现象,使IMF分量不能正确地反映信号的真实成分。因此,提出了在使用CEEMD分解信号的过程中嵌入网格搜索算法(grid search algorithm,简称GSA),以最小二乘互信息(least squares mutual information,简称LSMI)为网格搜索算法的适应度函数,构造一个自适应CEEMD方法。该算法通过自适应地搜索最佳的白噪声幅值,修正信号分解过程中产生的少量的耦合频率成分,确保每个IMF分量之间信息的正交性,以进一步抑制模态混叠问题。最后,通过仿真实验验证了该方法的有效性,并将该方法用于提取滚动轴承微故障的特征频率。实验结果表明,该算法在滚动轴承的微故障特征提取应用中具有更少的迭代数、IMF分量以及相对更小的计算量。 展开更多
关键词 互补集总经验模态分解 模态混叠 最小二乘互信息 网格搜索算法 微故障特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部