期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多尺度分层残差网络的光学遥感图像微小目标检测 被引量:1
1
作者 曾祥津 刘耿焕 +4 位作者 陈建明 豆嘉真 任振波 邸江磊 秦玉文 《光子学报》 EI CAS CSCD 北大核心 2024年第8期247-259,共13页
针对光学遥感图像中微小目标空间分辨率低、有效特征不足等问题,在YOLOv5检测算法基础上,提出一种基于多尺度分层残差网络的光学遥感图像微小目标检测方法。设计了一种简单高效的多尺度分层残差特征提取模块,可在更细粒度水平上获得更... 针对光学遥感图像中微小目标空间分辨率低、有效特征不足等问题,在YOLOv5检测算法基础上,提出一种基于多尺度分层残差网络的光学遥感图像微小目标检测方法。设计了一种简单高效的多尺度分层残差特征提取模块,可在更细粒度水平上获得更丰富的感受野,强化神经网络的特征提取能力,进一步提升微小目标特征丰富度。在此基础上,进一步优化损失函数中的定位损失项,通过增加距离惩罚提升检测算法对微小目标的定位能力。在光学遥感微小目标检测数据集AI-TODv2和微小行人检测数据集TinyPerson上开展了系统对比实验,实验结果表明所提出算法相较于基准YOLOv5算法平均精度分别提升了5.5%和1.8%,有效提高了微小目标检测的召回率和准确率。 展开更多
关键词 光学遥感图像 微小目标检测 深度学习 多尺度 卷积神经网络
在线阅读 下载PDF
基于改进VariFocalNet的微小目标检测
2
作者 姬张建 杜娜 《计算机应用》 CSCD 北大核心 2024年第7期2200-2207,共8页
针对航拍场景中包含的目标尺寸小、有效特征信息少的问题,提出一种基于改进的变焦网络VFNet(VariFocalNet)的航拍场景中微小目标检测算法。首先,为增强微小目标的特征表征能力,采用特征提取性能更好的循环层聚合网络(RLANet)代替ResNet... 针对航拍场景中包含的目标尺寸小、有效特征信息少的问题,提出一种基于改进的变焦网络VFNet(VariFocalNet)的航拍场景中微小目标检测算法。首先,为增强微小目标的特征表征能力,采用特征提取性能更好的循环层聚合网络(RLANet)代替ResNet作为主干网络;其次,为解决特征金字塔自顶向下融合时顶层特征信息丢失问题,引入特征增强模块(FEM);然后,为解决现有标签分配方法在微小目标标签分配上的样本分布不平衡问题,改进的VFNet采用了基于高斯感受野的标签分配方法;最后,为减小微小目标对位置偏移的敏感性,引入一种边界框回归损失函数Wasserstein损失测量预测边界框高斯分布和真值框高斯分布的相似性。在AI-TOD数据集上的实验结果表明:改进后的VFNet算法的平均精度均值(mAP)达到了14.9%;与改进前的算法相比,在航拍场景下的微小目标上的检测mAP提高了4.7个百分点。 展开更多
关键词 微小目标检测 循环层聚合网络 特征金字塔 高斯感受野 标签分配 Wasserstein损失
在线阅读 下载PDF
基于奇异值分解的雷达微小目标检测方法 被引量:15
3
作者 吴琳拥 毛谨 白渭雄 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第3期326-330,共5页
提出了一种强杂波环境下雷达微小目标的检测方法。该方法以奇异值分解理论为基础,利用奇异值一阶、二阶差分谱进行奇异值选择,通过奇异值逆变换将雷达回波信号分解成不同的成份,从而实现杂波抑制和小微目标凸现。试验表明:该方法能有效... 提出了一种强杂波环境下雷达微小目标的检测方法。该方法以奇异值分解理论为基础,利用奇异值一阶、二阶差分谱进行奇异值选择,通过奇异值逆变换将雷达回波信号分解成不同的成份,从而实现杂波抑制和小微目标凸现。试验表明:该方法能有效抑制杂波,平均提升信噪比7 dB左右。 展开更多
关键词 奇异值差分谱 信噪比 微小目标检测 杂波环境
在线阅读 下载PDF
特征金字塔多尺度全卷积目标检测算法 被引量:19
4
作者 林志洁 罗壮 +1 位作者 赵磊 鲁东明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第3期533-540,共8页
基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测.为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征.为了提高类... 基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测.为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征.为了提高类别无关的图像目标检测鲁棒性,提出特定的非极大值抑制算法,在重叠目标过滤时消除冗余目标窗口,并对目标窗口进行位置精修.在PASCAL VOC 2007、PASCAL VOC 2012以及古代绘画数据集上的实验结果表明:所提算法对于微小目标、多尺度目标检测及种类无关的目标检测的检测精度高于已有算法. 展开更多
关键词 图像目标检测 图像特征金字塔 多尺度全卷积 微小目标检测 类别无关目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部