The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temper...The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.展开更多
Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorpti...Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.展开更多
A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed r...A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.展开更多
This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid...This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid properties, slip velocity, and internal heat generation/absorption. The flow in boundary layer is considered to be generated solely by the stretching of the sheet adjacent to porous medium with boundary wall slip condition. Highly nonlinear momentum and thermal boundary layer equations governing the flow and heat transfer are reduced to set of nonlinear ordinary differential equations by appropriate transformation. The resulting ODEs are successfully solved numerically with the help of shooting method. Graphical results are shown for non-dimensional velocities and temperature. The effects of heat generation/absorption parameter, the porous parameter, the viscoelastic parameter, velocity slip parameter, variable thermal conductivity and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction coefficient and Nusselt number are presented. Comparison of numerical results is made with the earlier published results under limiting cases.展开更多
The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced t...The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.展开更多
A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet...A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair's backlashes and sun gear's bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear's bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system's stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system's non-linear behavior while the sun gear's bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion.展开更多
文摘The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.
文摘Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.
基金Project(2012BAF09B04)supported by the National Key Technology Research and Development Program of China
文摘A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.
文摘This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid properties, slip velocity, and internal heat generation/absorption. The flow in boundary layer is considered to be generated solely by the stretching of the sheet adjacent to porous medium with boundary wall slip condition. Highly nonlinear momentum and thermal boundary layer equations governing the flow and heat transfer are reduced to set of nonlinear ordinary differential equations by appropriate transformation. The resulting ODEs are successfully solved numerically with the help of shooting method. Graphical results are shown for non-dimensional velocities and temperature. The effects of heat generation/absorption parameter, the porous parameter, the viscoelastic parameter, velocity slip parameter, variable thermal conductivity and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction coefficient and Nusselt number are presented. Comparison of numerical results is made with the earlier published results under limiting cases.
文摘The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.
基金Projects(51375226,51305196,51475226) supported by the National Natural Science Foundation of ChinaProjects(NZ2013303,NZ2014201) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair's backlashes and sun gear's bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear's bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system's stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system's non-linear behavior while the sun gear's bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion.