期刊文献+
共找到1,009篇文章
< 1 2 51 >
每页显示 20 50 100
卷积循环神经网络的高光谱图像解混方法
1
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
基于卷积循环神经网络的手写汉字文本识别 被引量:1
2
作者 胡瑞朋 何春燕 +2 位作者 张伟明 赵立新 李明博 《科学技术与工程》 北大核心 2025年第4期1547-1554,共8页
为了解决卷积循环神经网络(convolutional recurrent neural networks, CRNN)手写汉字文本识别网络模型的训练参数大、文本识别率低等问题,提出一种基于注意力双向长短期记忆网络(based on attention bi-directional long short-term me... 为了解决卷积循环神经网络(convolutional recurrent neural networks, CRNN)手写汉字文本识别网络模型的训练参数大、文本识别率低等问题,提出一种基于注意力双向长短期记忆网络(based on attention bi-directional long short-term memory network, AT-BLSTM)和知识蒸馏(knowledge distillation, KD)技术的手写汉字识别方法。通过对AT-BLSTM网络的输入向量特征赋予不同的权重,使模型训练数据集更加高效、准确;通过KD技术将一个高性能的大模型获取的知识传输到一个小模型中,在确保模型准确性的同时,减少训练参数和内存占比,得到一个性能更优的轻量级训练模型。该方法通过多组实验对比,汉字识别准确率提高了6.7%,训练参数减少15.94 M。该网络模型识别准确率达到97.9%,汉字识别效果更好。 展开更多
关键词 卷积循环神经网络(CRNN) 手写汉字文本识别 注意力机制 知识蒸馏(KD)
在线阅读 下载PDF
基于注意力循环神经网络的联合深度推荐模型 被引量:1
3
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于循环神经网络的棒束通道流动参数实时计算方法研究
4
作者 李翔宇 解衡 《原子能科学技术》 北大核心 2025年第7期1386-1396,共11页
针对深度学习求解物理场方程时存在的算法不可解释性,训练模型时所需数据量大、训练时间长,且不能随意修改模型边界条件等问题,本文设计了一个可用于实时计算棒束通道内流速分布的循环神经网络(recurrent neural network,RNN)。该算法以... 针对深度学习求解物理场方程时存在的算法不可解释性,训练模型时所需数据量大、训练时间长,且不能随意修改模型边界条件等问题,本文设计了一个可用于实时计算棒束通道内流速分布的循环神经网络(recurrent neural network,RNN)。该算法以RNN作为基本结构,利用多松弛时间-格子玻尔兹曼方法(multiple relaxation time-lattice Boltzmann method,MRT-LBM)构造RNN的计算单元,利用浸入法和特征线法确定神经元的结构和数量,并利用顶盖驱动流模型、5×5棒束通道仿真计算和PIV测量结果验证算法的有效性。计算结果表明,RNN在计算上述两个模型的无量纲化流速分布时,与MRT-LBM和商业CFD软件相比,残差约为0.1,残差较模型入口处的流速小1个数量级。RNN在计算棒束通道截面的无量纲化流速时,消耗的计算时间约为0.005~0.03 s,仅为MRT-LBM的1/6~1/3,且计算结果基本与PIV的测量结果相符合。同时RNN所有的计算过程都有物理方程对应,因此RNN可以在保证计算精度的前提下极大提升计算速度,且具有可解释性。RNN可为反应堆数字孪生系统提供实时模拟流动参数的计算方法,进一步提升数字孪生系统对现实环境的模拟能力。 展开更多
关键词 反应堆数字孪生系统 棒束通道 深度学习 循环神经网络 多松弛时间-格子玻尔兹曼方法
在线阅读 下载PDF
基于循环神经网络的核电厂复合故障诊断方法
5
作者 陈逸龙 林萌 周士祺 《海军工程大学学报》 北大核心 2025年第1期36-42,共7页
核电厂单一故障识别的方法有很多,但是由于核电厂的复杂性,复合故障识别的难度较大,且传统故障诊断方法存在难以利用核电厂运行数据中时序信息的问题。针对上述问题,提出一种循环神经网络和多标签分类方法相结合的核电厂复合故障诊断方... 核电厂单一故障识别的方法有很多,但是由于核电厂的复杂性,复合故障识别的难度较大,且传统故障诊断方法存在难以利用核电厂运行数据中时序信息的问题。针对上述问题,提出一种循环神经网络和多标签分类方法相结合的核电厂复合故障诊断方法。该方法首先将故障数据切分为携带时序信息的输入样本;然后,通过循环神经网络提取故障样本中的时序特征;最后,通过多标签分类器完成多个故障标签的解耦输出,实现了复合故障的诊断。仿真实验验证了所提方法无论是对单一故障还是复合故障都具有良好的故障诊断效果。同时,还探究了不同循环神经单元和不同长度的输入样本对模型诊断效果的影响,结果表明:LSTM模型和GRU模型的效果优于常规RNN模型,且增加输入样本的长度并不一定能够提升模型诊断准确率。 展开更多
关键词 核电厂 循环神经网络 复合故障 多标签 深度学习
在线阅读 下载PDF
铣削刀具循环神经网络预测寿命方法
6
作者 陆浩天 冀晨宇 +1 位作者 张晟玮 沈彬 《机械设计与制造》 北大核心 2025年第3期66-70,共5页
在开展新的钛合金铣削工艺加工前,总是离不开刀具的选用,一把适应该工艺的刀具能有效提高生产效率,降低加工成本。然而由于钛合金的难加工性,在选刀过程中总会消耗很多时间和人力在试切过程中。为了降低试切消耗的时间和人力成本,提出... 在开展新的钛合金铣削工艺加工前,总是离不开刀具的选用,一把适应该工艺的刀具能有效提高生产效率,降低加工成本。然而由于钛合金的难加工性,在选刀过程中总会消耗很多时间和人力在试切过程中。为了降低试切消耗的时间和人力成本,提出了一种利用铣削试切过程中采集到的扭矩信号来评估和预测刀具在其寿命中的可用次数,并实现不同刀具间的横向对比以获得最佳刀具的方法。通常加工时扭矩的有效值已经能表征了铣刀的磨损状态,但不同刀具在加工时由于刃倾角、涂层等参数不同导致同样磨损量的刀具在加工时扭矩的有效值不同。该方法将提取扭矩的高频信号来表征加工状态,以避免刀具参数不同带来的影响;继而利用循环神经网络,把多次试切时的信号特征时序转化为刀具的寿命预测。实验结果表明,该方法能有效地通过前几次试切来预测刀具使用寿命,使得试切消耗的次数缩短到原来的1/3;能适用于不同刃倾角和涂层的刀具,并由此横向比对出最适应本次加工的刀具。 展开更多
关键词 刀具寿命预估 扭矩信号 循环神经网络 刀具优选
在线阅读 下载PDF
基于多尺度-组合式循环神经网络的内燃机缸套表面磨损量预测方法
7
作者 张永芳 侯丕鸿 +4 位作者 杨鑫亮 陈锐搏 康建雄 邢志国 吕延军 《摩擦学学报(中英文)》 北大核心 2025年第2期315-324,共10页
缸套作为内燃机的关键部件,其磨损状况直接影响内燃机活塞-缸套系统的服役性能.为了准确预测内燃机缸套表面的磨损状况,本文中提出了1种多尺度组合式的循环神经网络(MIXRNN)模型,该模型融合了多尺度特征提取技术与组合式循环神经网络(R... 缸套作为内燃机的关键部件,其磨损状况直接影响内燃机活塞-缸套系统的服役性能.为了准确预测内燃机缸套表面的磨损状况,本文中提出了1种多尺度组合式的循环神经网络(MIXRNN)模型,该模型融合了多尺度特征提取技术与组合式循环神经网络(RNN)架构,通过捕捉和学习缸套磨损过程中的时序特征及其动态关系,使其具备了非线性磨损量回归的能力.基于内燃机缸套实际运行数据的测试表明:该模型在平均绝对误差、平均相对误差、根均方误差及决定系数等性能指标上显著优于传统的RNN及其变体模型,尤其在处理小样本数据集和长时间序列数据时,具有很好的鲁棒性和准确性,为内燃机活塞-缸套系统的剩余寿命预测和服役性能评估提供了参考和依据. 展开更多
关键词 内燃机缸套 磨损量预测 多尺度特征 组合式循环神经网络 小样本训练
在线阅读 下载PDF
基于循环神经网络的多模态数据层次化缓存系统设计
8
作者 张燕 《现代电子技术》 北大核心 2025年第4期52-56,共5页
为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集... 为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集卡来采集NVM上频繁访问4 KB数据块的历史访问记录,再将历史访问记录编码为访问向量后构建训练集,作为长短期记忆(LSTM)网络的输入,用于预测访问频率。在缓存过滤模块中,将访问频率预测结果高于设定阈值部分的4 KB多模态数据读取到DRAM中进行缓存。实验结果显示:所设计系统可最大程度地降低系统带宽占用情况,TLB缺失率低,缓存执行效率较高,面对大页面具备显著缓存优势。 展开更多
关键词 多模态数据 层次化缓存 循环神经网络 长短期记忆(LSTM)网络 DRAM NVM 访问频率
在线阅读 下载PDF
基于改进门控循环神经网络的采煤机滚筒调高量预测 被引量:3
9
作者 齐爱玲 王雨 马宏伟 《工矿自动化》 CSCD 北大核心 2024年第2期116-123,共8页
采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采... 采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采用定长滑动时间窗法对获取的采煤机滚筒高度数据进行预处理,将输入数据划分为连续、大小可调的子序列,同时处理横向、纵向的特征信息。为提高模型预测效率,满足循环截割的实时性要求,提出了一种用因果卷积改进的门控循环神经网络(CC-GRU),对输入数据进行双重特征提取和双重数据过滤。CC-GRU利用因果卷积提前聚焦序列纵向的局部时间特征,以减少计算成本,提高运算速度;利用门控机制对卷积得到的特征进行序列化建模,以捕捉元素之间的长期依赖关系。实验结果表明,采用CC-GRU模型对采煤机滚筒调高量进行预测,平均绝对误差(MAE)为43.80 mm,平均绝对百分比误差(MAPE)为1.90%,均方根误差(RMSE)为50.35 mm,决定系数为0.65,预测时间仅为0.17 s;相比于长短时记忆(LSTM)神经网络、GRU、时域卷积网络(TCN),CC-GRU模型的预测速度较快且预测精度较高,能够更准确地对采煤机调高轨迹进行实时预测,为工作面煤层模型的建立和采煤机调高轨迹的预测提供了依据。 展开更多
关键词 采煤机 滚筒调高 煤岩识别 深度学习 门控循环神经网络 因果卷积
在线阅读 下载PDF
基于模型嵌入循环神经网络的损伤识别方法 被引量:1
10
作者 翁顺 雷奥琦 +3 位作者 陈志丹 于虹 颜永逸 余兴胜 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期21-29,共9页
目前,绝大多数基于深度学习的结构损伤识别方法依靠深度神经网络自动提取结构的损伤敏感特征,并通过损伤状态之间特征的差异实现模式分类识别.然而,这些方法面临着损伤量化难度大的挑战,并且需要大量的模型训练数据.本文提出基于模型嵌... 目前,绝大多数基于深度学习的结构损伤识别方法依靠深度神经网络自动提取结构的损伤敏感特征,并通过损伤状态之间特征的差异实现模式分类识别.然而,这些方法面临着损伤量化难度大的挑战,并且需要大量的模型训练数据.本文提出基于模型嵌入循环神经网络(Model-Embedding Recurrent Neural Network,MERNN)的损伤识别方法.首先,通过数据驱动的卷积神经网络(Convolutional Neural Network,CNN)建立荷载-响应之间的映射关系,然后,利用龙格库塔法改进传统的循环神经网络,建立基于循环神经网络架构的数值计算单元.最后,基于结构响应计算值与实测响应残差构成的损失函数与神经网络的自动微分机制来实现结构刚度参数的更新,进而实现结构损伤识别.数值模拟框架与实验室的3层剪切型框架的损伤识别结果表明,本文提出的方法能基于少量响应数据准确量化结构损伤. 展开更多
关键词 循环神经网络 龙格库塔法 损伤识别
在线阅读 下载PDF
基于自注意力和门控循环神经网络的雷达回波外推算法研究 被引量:4
11
作者 薛丰昌 章超钦 +1 位作者 王文硕 陈笑娟 《气象学报》 CAS CSCD 北大核心 2024年第1期127-135,共9页
为提升现有神经网络对雷达回波序列的时、空特征提取能力,建立外推性能更优的时、空序列预测模型,开展雷达回波外推算法改进研究。基于深圳市气象局与中国香港天文台共同建立的雷达回波数据集,在数据处理层面,通过改进对雷达回波图像序... 为提升现有神经网络对雷达回波序列的时、空特征提取能力,建立外推性能更优的时、空序列预测模型,开展雷达回波外推算法改进研究。基于深圳市气象局与中国香港天文台共同建立的雷达回波数据集,在数据处理层面,通过改进对雷达回波图像序列归一化的方法,提升了常用的5种时、空序列预测模型对强回波的预测水平;在模型算法层面,将两个联立的自注意力结构引入ST-LSTM结构,组成新的循环门控单元,并将这些循环门控单元进行堆叠,建立ST-SARNN模型。选用CSI和POD作为精度评价指标,进行模型对比分析得到:(1)改进的归一化方法提升了近几年内常用的5种时、空序列预测模型对强回波的预测水平。(2)加入自注意力的ST-SARNN模型对雷达回波的预测性能显著优于ConvLSTM、PredRNN和MIM等模型。改进的归一化方法能改变样本数据分布,并在一定程度上提升模型外推性能;自注意力结构能够有效挖掘雷达回波序列的时、空特征,进而改进神经网络的外推表现。 展开更多
关键词 雷达回波外推 自注意力机制 循环神经网络 数据归一化方法
在线阅读 下载PDF
基于循环神经网络的2-DOF软体机械臂运动建模与控制 被引量:2
12
作者 丁卫 郑云 +1 位作者 钟宋义 杨扬 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期522-531,共10页
因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、... 因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元(gated recurrentunit,GRU)神经网络模型进行训练.当调节超参数至网络结构最优时,测试集准确度可达98.87%.在此基础上,构建气压与负载到末端位置的映射函数.实验结果表明,本方法可将机械臂的控制精度提升至6»8 mm,显著降低了软体机器人的控制与建模难度. 展开更多
关键词 循环神经网络 门控循环单元模型 软体机械臂 建模与控制
在线阅读 下载PDF
联合张量补全与循环神经网络的时间序列插补法 被引量:2
13
作者 何军 赖赵远 时勘 《数据采集与处理》 CSCD 北大核心 2024年第3期598-608,共11页
现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,... 现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,本文提出了联合张量补全与循环神经网络的时间序列插补法。首先,将多元时间序列建模成张量,通过张量的低秩补全捕获不同时间序列之间的关系。其次,提出了一个基于时间的动态权重,将张量插补结果和循环神经网络的预测结果进行融合,避免因为连续缺失导致的预测误差累积。最后,在多个真实的时间序列数据集上对所提方法进行了实验评估,结果显示该模型优于已有相关模型,且基于插补后的时间序列可以提升时间序列预测效果。 展开更多
关键词 张量补全 时间序列插补 循环神经网络
在线阅读 下载PDF
基于循环神经网络的欧亚中高纬夏季极端高温年代际预测模型研究 被引量:2
14
作者 索朗多旦 黄艳艳 +1 位作者 陈雨豪 王会军 《大气科学学报》 CSCD 北大核心 2024年第2期273-283,共11页
近几十年来频繁发生的极端高温事件严重威胁着自然生态系统、社会经济发展和人类生命安全。针对生态环境脆弱的欧亚中高纬地区,首先评估了当前主流动力模式(CMIP6 DCPP)对于该地区夏季极端高温的年代际预测水平,并构建了基于循环神经网... 近几十年来频繁发生的极端高温事件严重威胁着自然生态系统、社会经济发展和人类生命安全。针对生态环境脆弱的欧亚中高纬地区,首先评估了当前主流动力模式(CMIP6 DCPP)对于该地区夏季极端高温的年代际预测水平,并构建了基于循环神经网络(Recurrent Neural Networks,RNN)的年代际预测模型。多模式集合平均(Multi-Model Ensemble,MME)的评估结果显示,得益于大样本和初始化的贡献,当前动力模式对于60°N以南区域(South Eurasia,SEA)展现了预测技巧,准确预测出了其线性增长趋势和1968—2008年间主要的年代际变率,然而模式对于60°N以北区域(North Eurasia,NEA)极端高温的年代际变率几乎没有任何预测技巧,仅预测出比观测低的线性增长趋势。基于86个初始场的动力模式大样本预测结果,RNN将2008—2020年间NEA和SEA极端高温的年代际变率预测技巧显著提高,距平相关系数技巧从MME中的-0.61和-0.03,提升至0.86和0.83,均方差技巧评分从MME中的-1.10和-0.94,提升至0.37和0.52。RNN的实时预测结果表明,在2021—2026年,SEA区域的极端高温将持续增加,2026年很可能发生突破历史极值的极端高温事件,NEA区域在2022年异常偏低,而后将呈现波动上升。 展开更多
关键词 极端高温 DCPP 年代际预测 循环神经网络
在线阅读 下载PDF
基于注意力机制循环神经网络的液体火箭发动机故障检测 被引量:1
15
作者 张万旋 卢哲 +2 位作者 张箭 薛薇 张楠 《导弹与航天运载技术(中英文)》 CSCD 北大核心 2024年第2期25-31,共7页
针对液体火箭发动机主级段工作过程,采用多变量非线性时间序列分析理论,在两级注意力机制循环神经网络(Dual Stage Attention Based Recurrent Neural Networks,DA-RNN)的基础上,提出一种新型时序分析工具——卷积两级注意力机制循环神... 针对液体火箭发动机主级段工作过程,采用多变量非线性时间序列分析理论,在两级注意力机制循环神经网络(Dual Stage Attention Based Recurrent Neural Networks,DA-RNN)的基础上,提出一种新型时序分析工具——卷积两级注意力机制循环神经网络(Convolutional Dual Stage Attention Based Recurrent Neural Networks,CDA-RNN),从而建立故障趋势预测模型。通过对预测残差进行自相关性分析并定义故障置信概率,提出了故障检测量化依据。利用发生微弱故障的热试车数据进行验证,结果表明,CDA-RNN模型对非稳态工作段微弱故障多参数检测具有良好鲁棒性,该方法十分有效,具有直接应用价值。 展开更多
关键词 多变量时间序列 注意力机制 循环神经网络 卷积神经网络 自相关性分析
在线阅读 下载PDF
多船会遇场景下基于循环神经网络的船舶航速预测 被引量:1
16
作者 严忠伟 赵建森 +3 位作者 吴欣雨 王胜正 陈信强 高原 《上海海事大学学报》 北大核心 2024年第2期1-6,共6页
为进一步提高复杂环境下的船舶航速预测精度,提出一种在多船会遇场景下基于循环神经网络(recurrent neural network,RNN)的船舶航速预测模型。从船舶自动识别系统(automatic identification system,AIS)数据中提取构成多船会遇场景的船... 为进一步提高复杂环境下的船舶航速预测精度,提出一种在多船会遇场景下基于循环神经网络(recurrent neural network,RNN)的船舶航速预测模型。从船舶自动识别系统(automatic identification system,AIS)数据中提取构成多船会遇场景的船舶航行动态信息(时间、航速等),采用插值法进行等时间间隔化处理,并构建基于RNN的船舶航速预测模型。采用长江口外水域的AIS数据,分别在不同会遇场景下进行实例验证。实验结果表明:在案例1和案例2场景下,RNN模型预测结果的平均绝对误差、均方误差、均方根误差、平均绝对百分比误差均比长短期记忆神经网络模型和支持向量机模型的小,说明RNN模型的预测精度比其他两种模型的高。 展开更多
关键词 交通安全 智能船舶 航速预测 循环神经网络(RNN) 船舶自动识别系统(AIS)
在线阅读 下载PDF
基于循环神经网络模型的创伤重症患者临床结局的动态预测 被引量:2
17
作者 齐戈尧 徐进 金志超 《海军军医大学学报》 CAS CSCD 北大核心 2024年第10期1241-1249,共9页
目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患... 目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患者院内结局为预测目标,使用长短时记忆(LSTM)和门控循环单元(GRU)2种RNN算法分别在4、6和8 h时间窗下训练动态预测模型。使用灵敏度、特异度、F1值和AUC值对模型性能进行评价,并分析不同RNN算法和时间窗对模型性能的影响。在8 h时间窗下分别训练隐马尔科夫模型(HMM)、随机森林(RF)模型和logistic模型作为对照,横向比较2种RNN算法模型与对照模型的性能指标,并分析各模型的时间趋势变化。结果 在不同时间窗时,RNN动态模型在灵敏度、特异度、F1值和AUC值等4个性能指标上差异均有统计学意义(均P<0.001),在8 h时间窗时模型的各性能指标均高于6 h和4 h时;不同RNN算法(LSTM和GRU)间仅特异度差异有统计学意义(P=0.036)。横向比较结果显示,2种RNN算法模型和其他模型间各性能指标差异均有统计学意义(均P<0.001),2种RNN算法模型各指标均高于HMM、RF和logistic模型;各算法模型灵敏度、特异度和F1值的ICC均小于0.400(95% CI未包含0),而AUC值的ICC在统计学上证据不足(95% CI包含0)。结论 基于RNN算法的动态模型对创伤重症患者临床结局的预测效果较其他常见模型具有一定优势,且时间窗对模型性能可能存在影响。 展开更多
关键词 循环神经网络 长短期记忆网络 门控循环单元 创伤 动态模型 临床结局 预测模型
在线阅读 下载PDF
基于JEC-FDTD等效循环神经网络的电磁建模和等离子体参数反演 被引量:1
18
作者 覃一澜 马嘉禹 +1 位作者 付海洋 徐丰 《电波科学学报》 CSCD 北大核心 2024年第3期552-560,共9页
磁化等离子体中的电磁波传播是重要的研究课题,针对特定场景下的电磁等离子耦合问题,进行有效且准确的方程建模与参数求解具有极强的研究价值和挑战性,这是探究电磁波与等离子体复杂非线性相互作用机制的关键。文中设计了一种可用于电... 磁化等离子体中的电磁波传播是重要的研究课题,针对特定场景下的电磁等离子耦合问题,进行有效且准确的方程建模与参数求解具有极强的研究价值和挑战性,这是探究电磁波与等离子体复杂非线性相互作用机制的关键。文中设计了一种可用于电磁等离子体正逆向建模的循环神经网络(recurrent neural network,RNN),该网络正向传播过程等价于任意磁倾角情况下的电流密度卷积时域有限差分(current density convolution finite-difference time-domain,JEC-FDTD)方法,因此可以求解给定的电磁建模问题,并易于大规模并行计算。通过构建前向可微模拟过程,JEC-FDTD方法可以使用自动微分技术准确且高效地计算梯度,然后通过训练网络来解决反问题。因此,该方法可以有效利用观测到的时域散射场信号反演重要的等离子体参数。JEC-FDTD方法和RNN相结合,形成了较强的协同效应,使得模型具有可解释性和高效的计算效率,受益于深度学习提供的优化策略和专用硬件支持,可以适用于不同仿真场景下的电磁建模和等离子体参数反演。 展开更多
关键词 电流密度卷积时域有限差分(JEC-FDTD)方法 磁化等离子体 循环神经网络(RNN) 物理启发的机器学习算法 参数反演
在线阅读 下载PDF
基于多层复杂网络的循环神经网络交通量预测模型 被引量:2
19
作者 温志勇 翁小雄 谢帮权 《现代电子技术》 北大核心 2024年第22期173-178,共6页
针对未安装车流量检测设备的高速公路路段进行短时交通量准确预测,是一个亟待解决的问题。为此,提出一种基于复杂网络的循环神经网络路段短时交通量预测模型。该模型以入口节点交通量为输入,输出路段动态预测交通量。模型由复杂网络、... 针对未安装车流量检测设备的高速公路路段进行短时交通量准确预测,是一个亟待解决的问题。为此,提出一种基于复杂网络的循环神经网络路段短时交通量预测模型。该模型以入口节点交通量为输入,输出路段动态预测交通量。模型由复杂网络、交通小区划分、循环神经网络三个模块组成。复杂网络由多层网络组成,是交通小区划分的基础;交通小区划分模块根据节点特征值,采用聚类方法将节点形成小区,使同小区内节点具有类似特征。最后,以交通小区为依据,将节点交通量合并为小区交通量,采用循环神经网络进行路段动态交通量的预测。通过模型示例并与其他模型预测结果进行对比分析,验证所提模型的准确性和可靠性。结果表明,该模型能够准确地预测不同时长的交通量,MAPE为9.275%,相比于其他方法,预测精度更高且性能稳定,具有重要的应用价值。 展开更多
关键词 交通量预测 高速公路路段 多层复杂网络 循环神经网络 交通小区划分 预测精度
在线阅读 下载PDF
基于循环神经网络的自适应滤波方法及应用研究 被引量:1
20
作者 任鸿燚 刘翔宇 +1 位作者 咸甘玲 兰景岩 《振动与冲击》 EI CSCD 北大核心 2024年第7期327-333,共7页
针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的... 针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的自我迭代等方式进行滤波,对噪声识别能力和滤波速度上均优于美国地质调查局(United States Geological Survey,USGS)所推荐的传统滤波方法,并可有效降低滤波后对原始波形的失真损坏以及相位提前等问题。同时,运用所提自适应滤波方法将其应用于不同场地类型台站的含速度脉冲近场地震记录,进一步验证了自适应滤波方法的有效性和适用性。研究成果为地震工程领域的滤波分析提出了一种新思路和新方法,也可为地震记录处理及相关应用工作提供参考。 展开更多
关键词 循环神经网络(RNN) 自适应调节 递归最小二乘法(RLS) 地震波滤波
在线阅读 下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部